About: IMPORTANCE In the epidemic, surgeons cannot distinguish infectious acute abdomen patients suspected COVID-19 quickly and effectively. OBJECTIVE To develop and validate a predication model, presented as nomogram and scale, to distinguish infectious acute abdomen patients suspected coronavirus disease 2019 (COVID-19). DESIGN Diagnostic model based on retrospective case series. SETTING Two hospitals in Wuhan and Beijing, China. PTRTICIPANTS 584 patients admitted to hospital with laboratory confirmed SARS-CoV-2 from 2 Jan 2020 to15 Feb 2020 and 238 infectious acute abdomen patients receiving emergency operation from 28 Feb 2019 to 3 Apr 2020. METHODS LASSO regression and multivariable logistic regression analysis were conducted to develop the prediction model in training cohort. The performance of the nomogram was evaluated by calibration curves, receiver operating characteristic (ROC) curves, decision curve analysis (DCA) and clinical impact curves in training and validation cohort. A simplified screening scale and managing algorithm was generated according to the nomogram. RESULTS Six potential COVID-19 prediction variables were selected and the variable abdominal pain was excluded for overmuch weight. The five potential predictors, including fever, chest computed tomography (CT), leukocytes (white blood cells, WBC), C-reactive protein (CRP) and procalcitonin (PCT), were all independent predictors in multivariable logistic regression analysis (p[≤]0.001) and the nomogram, named COVID-19 Infectious Acute Abdomen Distinguishment (CIAAD) nomogram, was generated. The CIAAD nomogram showed good discrimination and calibration (C-index of 0.981 (95% CI, 0.963 to 0.999) and AUC of 0.970 (95% CI, 0.961 to 0.982)), which was validated in the validation cohort (C-index of 0.966 (95% CI, 0.960 to 0.972) and AUC of 0.966 (95% CI, 0.957 to 0.975)). Decision curve analysis revealed that the CIAAD nomogram was clinically useful. The nomogram was further simplified into the CIAAD scale. CONCLUSIONS We established an easy and effective screening model and scale for surgeons in emergency department to distinguish COVID-19 patients from infectious acute abdomen patients. The algorithm based on CIAAD scale will help surgeons manage infectious acute abdomen patients suspected COVID-19 more efficiently.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • IMPORTANCE In the epidemic, surgeons cannot distinguish infectious acute abdomen patients suspected COVID-19 quickly and effectively. OBJECTIVE To develop and validate a predication model, presented as nomogram and scale, to distinguish infectious acute abdomen patients suspected coronavirus disease 2019 (COVID-19). DESIGN Diagnostic model based on retrospective case series. SETTING Two hospitals in Wuhan and Beijing, China. PTRTICIPANTS 584 patients admitted to hospital with laboratory confirmed SARS-CoV-2 from 2 Jan 2020 to15 Feb 2020 and 238 infectious acute abdomen patients receiving emergency operation from 28 Feb 2019 to 3 Apr 2020. METHODS LASSO regression and multivariable logistic regression analysis were conducted to develop the prediction model in training cohort. The performance of the nomogram was evaluated by calibration curves, receiver operating characteristic (ROC) curves, decision curve analysis (DCA) and clinical impact curves in training and validation cohort. A simplified screening scale and managing algorithm was generated according to the nomogram. RESULTS Six potential COVID-19 prediction variables were selected and the variable abdominal pain was excluded for overmuch weight. The five potential predictors, including fever, chest computed tomography (CT), leukocytes (white blood cells, WBC), C-reactive protein (CRP) and procalcitonin (PCT), were all independent predictors in multivariable logistic regression analysis (p[≤]0.001) and the nomogram, named COVID-19 Infectious Acute Abdomen Distinguishment (CIAAD) nomogram, was generated. The CIAAD nomogram showed good discrimination and calibration (C-index of 0.981 (95% CI, 0.963 to 0.999) and AUC of 0.970 (95% CI, 0.961 to 0.982)), which was validated in the validation cohort (C-index of 0.966 (95% CI, 0.960 to 0.972) and AUC of 0.966 (95% CI, 0.957 to 0.975)). Decision curve analysis revealed that the CIAAD nomogram was clinically useful. The nomogram was further simplified into the CIAAD scale. CONCLUSIONS We established an easy and effective screening model and scale for surgeons in emergency department to distinguish COVID-19 patients from infectious acute abdomen patients. The algorithm based on CIAAD scale will help surgeons manage infectious acute abdomen patients suspected COVID-19 more efficiently.
subject
  • Zoonoses
  • Epidemics
  • Viral respiratory tract infections
  • Abdominal pain
  • COVID-19
  • Biological hazards
  • Medical emergencies
  • Medical terminology
  • Occupational safety and health
  • Symptoms and signs: Digestive system and abdomen
  • General surgery
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software