About: Angiotensin converting enzyme-2 (ACE2) is a recently described homologue of the vasoactive peptidase, angiotensin converting enzyme (ACE). Like ACE, ACE2 is an integral (type I) membrane zinc metallopeptidase, which exists as an ectoenzyme. ACE2 is less widely distributed than ACE in the body, being expressed at highest concentrations in the heart, kidney and testis. ACE2 also differs from ACE in its substrate specificity, functioning exclusively as a carboxypeptidase rather than a peptidyl dipeptidase. A key role for ACE2 appears to be emerging in the conversion of angiotensin II to angiotensin (1–7), allowing it to act as a counter-balance to the actions of ACE. ACE2 has been localised to the endothelial and epithelial cells of the heart and kidney where it may have a role at the cell surface in hydrolysing bioactive peptides such as angiotensin II present in the circulation. A role for ACE2 in the metabolism of other biologically active peptides also needs to be considered. ACE2 also serendipitously appears to act as a receptor for the severe acute respiratory syndrome (SARS) coronavirus. Studies using ace2 (-/-) mice, and other emerging studies in vivo and in vitro, have revealed that ACE2 has important functions in cardiac regulation and diabetes. Together with its role as a SARS receptor, ACE2 is therefore likely to be an important therapeutic target in a diverse range of disease states.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Angiotensin converting enzyme-2 (ACE2) is a recently described homologue of the vasoactive peptidase, angiotensin converting enzyme (ACE). Like ACE, ACE2 is an integral (type I) membrane zinc metallopeptidase, which exists as an ectoenzyme. ACE2 is less widely distributed than ACE in the body, being expressed at highest concentrations in the heart, kidney and testis. ACE2 also differs from ACE in its substrate specificity, functioning exclusively as a carboxypeptidase rather than a peptidyl dipeptidase. A key role for ACE2 appears to be emerging in the conversion of angiotensin II to angiotensin (1–7), allowing it to act as a counter-balance to the actions of ACE. ACE2 has been localised to the endothelial and epithelial cells of the heart and kidney where it may have a role at the cell surface in hydrolysing bioactive peptides such as angiotensin II present in the circulation. A role for ACE2 in the metabolism of other biologically active peptides also needs to be considered. ACE2 also serendipitously appears to act as a receptor for the severe acute respiratory syndrome (SARS) coronavirus. Studies using ace2 (-/-) mice, and other emerging studies in vivo and in vitro, have revealed that ACE2 has important functions in cardiac regulation and diabetes. Together with its role as a SARS receptor, ACE2 is therefore likely to be an important therapeutic target in a diverse range of disease states.
Subject
  • Kidney
  • Cardiovascular physiology
  • EC 3.4.17
  • Membrane biology
  • Single-pass transmembrane proteins
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software