About: The emerging Federated Edge Learning (FEL) technique has drawn considerable attention, which not only ensures good machine learning performance but also solves%22data island%22problems caused by data privacy concerns. However, large-scale FEL still faces following crucial challenges: (i) there lacks a secure and communication-efficient model training scheme for FEL; (2) there is no scalable and flexible FEL framework for updating local models and global model sharing (trading) management. To bridge the gaps, we first propose a blockchain-empowered secure FEL system with a hierarchical blockchain framework consisting of a main chain and subchains. This framework can achieve scalable and flexible decentralized FEL by individually manage local model updates or model sharing records for performance isolation. A Proof-of-Verifying consensus scheme is then designed to remove low-quality model updates and manage qualified model updates in a decentralized and secure manner, thereby achieving secure FEL. To improve communication efficiency of the blockchain-empowered FEL, a gradient compression scheme is designed to generate sparse but important gradients to reduce communication overhead without compromising accuracy, and also further strengthen privacy preservation of training data. The security analysis and numerical results indicate that the proposed schemes can achieve secure, scalable, and communication-efficient decentralized FEL.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The emerging Federated Edge Learning (FEL) technique has drawn considerable attention, which not only ensures good machine learning performance but also solves%22data island%22problems caused by data privacy concerns. However, large-scale FEL still faces following crucial challenges: (i) there lacks a secure and communication-efficient model training scheme for FEL; (2) there is no scalable and flexible FEL framework for updating local models and global model sharing (trading) management. To bridge the gaps, we first propose a blockchain-empowered secure FEL system with a hierarchical blockchain framework consisting of a main chain and subchains. This framework can achieve scalable and flexible decentralized FEL by individually manage local model updates or model sharing records for performance isolation. A Proof-of-Verifying consensus scheme is then designed to remove low-quality model updates and manage qualified model updates in a decentralized and secure manner, thereby achieving secure FEL. To improve communication efficiency of the blockchain-empowered FEL, a gradient compression scheme is designed to generate sparse but important gradients to reduce communication overhead without compromising accuracy, and also further strengthen privacy preservation of training data. The security analysis and numerical results indicate that the proposed schemes can achieve secure, scalable, and communication-efficient decentralized FEL.
subject
  • Information systems
  • Software quality
  • Blockchains
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software