About: Abstract Severe acute respiratory syndrome (SARS) is a respiratory disease caused by a newly found virus, called SARS coronavirus. In this study, the cleavage mechanism of the SARS coronavirus main proteinase (Mpro or 3CLpro) on the octapeptide NH2-AVLQ↓SGFR-COOH was investigated using molecular mechanics and quantum mechanics simulations based on the experimental structure of the proteinase. It has been observed that the catalytic dyad (His-41/Cys-145) site between domains I and II attracts the π electron density from the peptide bond Gln–Ser, increasing the positive charge on C(CO) of Gln and the negative charge on N(NH) of Ser, so as to weaken the Gln–Ser peptide bond. The catalytic functional group is the imidazole group of His-41 and the S in Cys-145. Nδ1 on the imidazole ring plays the acid–base catalytic role. Based on the “distorted key theory” [K.C. Chou, Anal. Biochem. 233 (1996) 1–14], the possibility to convert the octapeptide to a competent inhibitor has been studied. It has been found that the chemical bond between Gln and Ser will become much stronger and no longer cleavable by the SARS enzyme after either changing the carbonyl group CO of Gln to CH2 or CF2 or changing the NH of Ser to CH2 or CF2. The octapeptide thus modified might become an effective inhibitor or a potential drug candidate against SARS.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Severe acute respiratory syndrome (SARS) is a respiratory disease caused by a newly found virus, called SARS coronavirus. In this study, the cleavage mechanism of the SARS coronavirus main proteinase (Mpro or 3CLpro) on the octapeptide NH2-AVLQ↓SGFR-COOH was investigated using molecular mechanics and quantum mechanics simulations based on the experimental structure of the proteinase. It has been observed that the catalytic dyad (His-41/Cys-145) site between domains I and II attracts the π electron density from the peptide bond Gln–Ser, increasing the positive charge on C(CO) of Gln and the negative charge on N(NH) of Ser, so as to weaken the Gln–Ser peptide bond. The catalytic functional group is the imidazole group of His-41 and the S in Cys-145. Nδ1 on the imidazole ring plays the acid–base catalytic role. Based on the “distorted key theory” [K.C. Chou, Anal. Biochem. 233 (1996) 1–14], the possibility to convert the octapeptide to a competent inhibitor has been studied. It has been found that the chemical bond between Gln and Ser will become much stronger and no longer cleavable by the SARS enzyme after either changing the carbonyl group CO of Gln to CH2 or CF2 or changing the NH of Ser to CH2 or CF2. The octapeptide thus modified might become an effective inhibitor or a potential drug candidate against SARS.
subject
  • Virology
  • Thiols
  • Quantum mechanics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software