AttributesValues
type
value
  • The growth rates of COVID-19 across different geographical regions (e.g., states in a nation, countries in a continent) follow different shapes and patterns. The overall summaries at coarser spatial scales that are obtained by simply averaging individual curves (across regions) obscure nuanced variability and blurs the spatial heterogeneity at finer spatial scales. We employ statistical methods to analyze shapes of local COVID-19 growth rate curves and statistically group them into distinct clusters, according to their shapes. Using this information, we derive the so-called elastic averages of curves within these clusters, which correspond to the dominant incidence patterns. We apply this methodology to the analysis of the daily incidence trajectory of the COVID-pandemic at two spatial scales: A state-level analysis within the USA and a country-level analysis within Europe during mid-February to mid-May, 2020. Our analyses reveal a few dominant incidence trajectories that characterize transmission dynamics across states in the USA and across countries in Europe. This approach results in broad classifications of spatial areas into different trajectories and adds to the methodological toolkit for guiding public health decision making at different spatial scales.
Subject
  • Europe
  • Zoonoses
  • Viral respiratory tract infections
  • Ecosystems
  • COVID-19
  • Decision-making
  • Continents
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software