About: The rapid spread of the SARS-CoV-2 epidemic has simultaneous time and space dynamics. This behaviour results from a complex combination of factors, including social ones, which lead to significant differences in the evolution of the spatiotemporal pattern between and within countries. Usually, spatial smoothing techniques are used to map health outcomes, and rarely uncertainty of the spatial predictions are assessed. As an alternative, we propose to apply direct block sequential simulation to model the spatial distribution of the COVID-19 infection risk in mainland Portugal. Given the daily number of infection data provided by the Portuguese Directorate-General for Health, the daily updates of infection rates are calculated by municipality and used as experimental data in the geostatistical simulation. The model considers the uncertainty/error associated with the size of each municipality’s population. The calculation of daily updates of the infection risk maps results from the median model of one ensemble of 100 geostatistical realizations of daily updates of the infection risk. The ensemble of geostatistical realizations is also used to calculate the associated spatial uncertainty of the spatial prediction using the interquartile distance. The risk maps are updated daily and show the regions with greater risks of infection and the critical dynamics related to its development over time.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The rapid spread of the SARS-CoV-2 epidemic has simultaneous time and space dynamics. This behaviour results from a complex combination of factors, including social ones, which lead to significant differences in the evolution of the spatiotemporal pattern between and within countries. Usually, spatial smoothing techniques are used to map health outcomes, and rarely uncertainty of the spatial predictions are assessed. As an alternative, we propose to apply direct block sequential simulation to model the spatial distribution of the COVID-19 infection risk in mainland Portugal. Given the daily number of infection data provided by the Portuguese Directorate-General for Health, the daily updates of infection rates are calculated by municipality and used as experimental data in the geostatistical simulation. The model considers the uncertainty/error associated with the size of each municipality’s population. The calculation of daily updates of the infection risk maps results from the median model of one ensemble of 100 geostatistical realizations of daily updates of the infection risk. The ensemble of geostatistical realizations is also used to calculate the associated spatial uncertainty of the spatial prediction using the interquartile distance. The risk maps are updated daily and show the regions with greater risks of infection and the critical dynamics related to its development over time.
subject
  • Zoonoses
  • Epidemiology
  • Infectious diseases
  • COVID-19
  • Pattern formation
  • Information theory
  • Geostatistics
  • Chiroptera-borne diseases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software