AttributesValues
type
value
  • Electron tomography (ET) is a three-dimensional technique suitable to study pleomorphic biological structures with nanometer resolution. This makes the methodology remarkably versatile, allowing the exploration of a large range of biological specimens, both in an isolated state and in their cellular context. The application of ET has undergone an exponential growth over the last decade, enabled by seminal technological advances in methods and instrumentation, and is starting to make a significant impact on our understanding of the cellular world. While the attained results are already remarkable, ET remains a young technique with ample potential to be exploited. Current developments towards large-scale automation, higher resolution, macromolecular labeling and integration with other imaging techniques hold promise for a near future in which ET will extend its role as a pivotal tool in structural and cell biology.
subject
  • Electron microscopy
  • Medical physics
  • Exponentials
  • Multi-dimensional geometry
  • Multidimensional signal processing
  • Condensed matter physics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software