About: The COVID-19 novel virus, as an emerging highly pathogenic agent, has caused a pandemic. Revealing the influencing factors affecting transmission of COVID-19 is essential to take effective control measures. Several previous studies suggested that the spread of COVID-19 was likely associated with temperature and/or humidity. But, a recent extensive review indicated that conclusions on associations between climate and COVID-19 were elusive with high uncertainty due to caveats in most previous studies, such as limitations in time and space, data quality and confounding factors. In this study, by using a more extensive global dataset covering 578 time series from China, USA, Europe and the rest of the world, we show that climate show distinct impacts on early and late transmission of COVID-19 in the world after excluding the confounding factors. The early transmission ability of COVID-19 peaked around 6.3{degrees}C without or with little human intervention, but the later transmission ability was reduced in high temperature conditions under human intervention, probably driven by increased control efficiency of COVID-19. The transmission ability was positively associated with the founding population size of early reported cases and population size of a location. Our study suggested that with the coming summer seasons, the transmission risk of COVID-19 would increase in the high-latitude or high-altitude regions but decrease in low-latitude or low-altitude regions; human intervention is essential in containing the spread of COVID-19 around the world.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The COVID-19 novel virus, as an emerging highly pathogenic agent, has caused a pandemic. Revealing the influencing factors affecting transmission of COVID-19 is essential to take effective control measures. Several previous studies suggested that the spread of COVID-19 was likely associated with temperature and/or humidity. But, a recent extensive review indicated that conclusions on associations between climate and COVID-19 were elusive with high uncertainty due to caveats in most previous studies, such as limitations in time and space, data quality and confounding factors. In this study, by using a more extensive global dataset covering 578 time series from China, USA, Europe and the rest of the world, we show that climate show distinct impacts on early and late transmission of COVID-19 in the world after excluding the confounding factors. The early transmission ability of COVID-19 peaked around 6.3{degrees}C without or with little human intervention, but the later transmission ability was reduced in high temperature conditions under human intervention, probably driven by increased control efficiency of COVID-19. The transmission ability was positively associated with the founding population size of early reported cases and population size of a location. Our study suggested that with the coming summer seasons, the transmission risk of COVID-19 would increase in the high-latitude or high-altitude regions but decrease in low-latitude or low-altitude regions; human intervention is essential in containing the spread of COVID-19 around the world.
Subject
  • Europe
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Thermodynamics
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software