About: Several studies suggest that exposure to 50 Hz magnetic fields may promote chemically induced breast cancer in rats. Groups of 100 female Sprague–Dawley rats were initiated with four weekly 5 mg gavage doses of 7,12-dimethylbenz[a]anthracene (DMBA) starting at 50 days of age. After the first weekly DMBA administration, exposure to ambient fields (sham exposed), 50 Hz magnetic fields at either 1 or 5 G field intensity or 60 Hz fields at 1 G for 18.5 h/day, 7 days/week was initiated. Exposure continued for 13 weeks. A vehicle control group without DMBA was included. In a second study, using lower doses of DMBA, groups of 100 female Sprague–Dawley rats were initiated with four weekly doses of 2 mg of DMBA starting at 50 days of age followed, after the first weekly DMBA administration, by exposure to ambient fields (sham exposed) or 50 Hz magnetic fields at either 1 or 5 G field intensity for 18.5 h/day, 7 days/week for 13 weeks. Rats were weighed and palpated weekly for the presence of tumors. There was no effect of magnetic field exposure on body weight gains or on the time of appearance of mammary tumors in either study. At the end of 13 weeks, the animals were killed and the mammary tumors counted and measured. Mammary gland masses found grossly were examined histologically. In the first 13 week study, the mammary gland carcinoma incidences were 92, 86, 96 and 96% for the DMBA controls, 1 G, 50 Hz, 5 G, 50 Hz and 1 G, 60 Hz groups, respectively. The total numbers of carcinomas were 691, 528 (P < 0.05, decrease), 561 and 692 for the DMBA controls, 1 G, 50 Hz, 5 G, 50 Hz and 1 G, 60 Hz groups, respectively. In study 2, the mammary gland carcinoma incidences were 43, 48 and 38% for the DMBA controls, 1 G, 50 Hz and 5 G, 50 Hz groups, respectively. The total numbers of carcinomas were 102, 90 and 79 for the DMBA controls, 1 G, 50 Hz and 5 G, 50 Hz groups, respectively. There was no effect of magnetic field exposure on tumor size either by in-life palpation or by measurement at necropsy in either study. There was no evidence that 50 or 60 Hz magnetic fields promoted breast cancer in these studies in female rats. These studies do not support the hypothesis that magnetic field exposure promotes breast cancer in this DMBA rat model.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Several studies suggest that exposure to 50 Hz magnetic fields may promote chemically induced breast cancer in rats. Groups of 100 female Sprague–Dawley rats were initiated with four weekly 5 mg gavage doses of 7,12-dimethylbenz[a]anthracene (DMBA) starting at 50 days of age. After the first weekly DMBA administration, exposure to ambient fields (sham exposed), 50 Hz magnetic fields at either 1 or 5 G field intensity or 60 Hz fields at 1 G for 18.5 h/day, 7 days/week was initiated. Exposure continued for 13 weeks. A vehicle control group without DMBA was included. In a second study, using lower doses of DMBA, groups of 100 female Sprague–Dawley rats were initiated with four weekly doses of 2 mg of DMBA starting at 50 days of age followed, after the first weekly DMBA administration, by exposure to ambient fields (sham exposed) or 50 Hz magnetic fields at either 1 or 5 G field intensity for 18.5 h/day, 7 days/week for 13 weeks. Rats were weighed and palpated weekly for the presence of tumors. There was no effect of magnetic field exposure on body weight gains or on the time of appearance of mammary tumors in either study. At the end of 13 weeks, the animals were killed and the mammary tumors counted and measured. Mammary gland masses found grossly were examined histologically. In the first 13 week study, the mammary gland carcinoma incidences were 92, 86, 96 and 96% for the DMBA controls, 1 G, 50 Hz, 5 G, 50 Hz and 1 G, 60 Hz groups, respectively. The total numbers of carcinomas were 691, 528 (P < 0.05, decrease), 561 and 692 for the DMBA controls, 1 G, 50 Hz, 5 G, 50 Hz and 1 G, 60 Hz groups, respectively. In study 2, the mammary gland carcinoma incidences were 43, 48 and 38% for the DMBA controls, 1 G, 50 Hz and 5 G, 50 Hz groups, respectively. The total numbers of carcinomas were 102, 90 and 79 for the DMBA controls, 1 G, 50 Hz and 5 G, 50 Hz groups, respectively. There was no effect of magnetic field exposure on tumor size either by in-life palpation or by measurement at necropsy in either study. There was no evidence that 50 or 60 Hz magnetic fields promoted breast cancer in these studies in female rats. These studies do not support the hypothesis that magnetic field exposure promotes breast cancer in this DMBA rat model.
subject
  • Carcinoma
  • Polycyclic aromatic hydrocarbons
  • Carcinogens
  • Immunosuppressants
  • Mammal anatomy
  • Anthracenes
  • 2007 elections in Belgium
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software