About: Currently, a wide range of analytical methods is available for virus detection in environmental water samples. Molecular methods such as polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) have the highest sensitivity and specificity to investigate virus contamination in water, so they are the most commonly used in environmental virology. Despite great sensitivity of PCR, the main limitation is the lack of the correlation between the detected viral genome and viral infectivity, which limits conclusions regarding the significance for public health. To provide information about the infectivity of the detected viruses, cultivation on animal cell culture is the gold standard. However, cell culture infectivity assays are laborious, time consuming and costly. Also, not all viruses are able to produce cytopathic effect and viruses such as human noroviruses have no available cell line for propagation. In this brief review, we present a summary and critical evaluation of different approaches that have been recently proposed to overcome limitations of the traditional cell culture assay and PCR assay such as integrated cell culture-PCR, detection of genome integrity, detection of capsid integrity, and measurement of oxidative damages on viral capsid protein. Techniques for rapid detection of infectious viruses such as fluorescence microscopy and automated flow cytometry have also been suggested to assess virus infectivity in water samples.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Currently, a wide range of analytical methods is available for virus detection in environmental water samples. Molecular methods such as polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) have the highest sensitivity and specificity to investigate virus contamination in water, so they are the most commonly used in environmental virology. Despite great sensitivity of PCR, the main limitation is the lack of the correlation between the detected viral genome and viral infectivity, which limits conclusions regarding the significance for public health. To provide information about the infectivity of the detected viruses, cultivation on animal cell culture is the gold standard. However, cell culture infectivity assays are laborious, time consuming and costly. Also, not all viruses are able to produce cytopathic effect and viruses such as human noroviruses have no available cell line for propagation. In this brief review, we present a summary and critical evaluation of different approaches that have been recently proposed to overcome limitations of the traditional cell culture assay and PCR assay such as integrated cell culture-PCR, detection of genome integrity, detection of capsid integrity, and measurement of oxidative damages on viral capsid protein. Techniques for rapid detection of infectious viruses such as fluorescence microscopy and automated flow cytometry have also been suggested to assess virus infectivity in water samples.
Subject
  • Virology
  • Biotechnology
  • Viruses
  • Cell imaging
  • Laboratory techniques
  • Molecular biology
  • Molecular biology techniques
  • Virus genera
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software