About: This study analyzes the link between temperatures and COVID-19 contagions in a sample of Italian regions during the period ranging from February 24 to April 15. To that end, Bayesian Model Averaging techniques are used to analyze the relevance of the temperatures together with a set of additional climate, environmental, demographic, social and policy factors. The robustness of individual covariates is measured through posterior inclusion probabilities. The empirical analysis provides conclusive evidence on the role played by the temperatures given that it appears as the most relevant determinant of contagions. This finding is robust to (i) the prior distribution elicitation, (ii) the procedure to assign weights to the regressors, (iii) the presence of measurement errors in official data due to under-reporting, (iv) the employment of different metrics of temperatures or (v) the inclusion of additional correlates. In a second step, relative importance metrics that perform an accurate partitioning of the R2 of the model are calculated. The results of this approach support the evidence of the model averaging analysis, given that temperature is the top driver explaining 45% of regional contagion disparities. The set of policy-related factors appear in a second level of importance, whereas factors related to the degree of social connectedness or the demographic characteristics are less relevant.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • This study analyzes the link between temperatures and COVID-19 contagions in a sample of Italian regions during the period ranging from February 24 to April 15. To that end, Bayesian Model Averaging techniques are used to analyze the relevance of the temperatures together with a set of additional climate, environmental, demographic, social and policy factors. The robustness of individual covariates is measured through posterior inclusion probabilities. The empirical analysis provides conclusive evidence on the role played by the temperatures given that it appears as the most relevant determinant of contagions. This finding is robust to (i) the prior distribution elicitation, (ii) the procedure to assign weights to the regressors, (iii) the presence of measurement errors in official data due to under-reporting, (iv) the employment of different metrics of temperatures or (v) the inclusion of additional correlates. In a second step, relative importance metrics that perform an accurate partitioning of the R2 of the model are calculated. The results of this approach support the evidence of the model averaging analysis, given that temperature is the top driver explaining 45% of regional contagion disparities. The set of policy-related factors appear in a second level of importance, whereas factors related to the degree of social connectedness or the demographic characteristics are less relevant.
subject
  • Southern European countries
  • 1861 establishments in Europe
  • Human geography
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software