About: Finding vaccine or specific antiviral treatment for global pandemic of virus diseases (such as the ongoing COVID-19) requires rapid analysis, annotation and evaluation of metagenomic libraries to enable a quick and efficient screening of nucleotide sequences. Traditional sequence alignment methods are not suitable and there is a need for fast alignment-free techniques for sequence analysis. Information theory and data compression algorithms provide a rich set of mathematical and computational tools to capture essential patterns in biological sequences. In 2013, our research group (Nagaraj et al., Eur. Phys. J. Special Topics 222(3-4), 2013) has proposed a novel measure known as Effort-To-Compress (ETC) based on the notion of compression-complexity to capture the information content of sequences. In this study, we propose a compression-complexity based distance measure for automatic identification of SARS coronavirus strains from a set of viruses using only short fragments of nucleotide sequences. We also demonstrate that our proposed method can correctly distinguish SARS-CoV-2 from SARS-CoV-1 viruses by analyzing very short segments of nucleotide sequences. This work could be extended further to enable medical practitioners in automatically identifying and characterizing SARS coronavirus strain in a fast and efficient fashion using short and/or incomplete segments of nucleotide sequences. Potentially, the need for sequence assembly can be circumvented. Note The main ideas and results of this research were first presented at the International Conference on Nonlinear Systems and Dynamics (CNSD-2013) held at Indian Institute of Technology, Indore, December 12, 2013. In this manuscript, we have extended our preliminary analysis to include SARS-CoV-2 virus as well.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Finding vaccine or specific antiviral treatment for global pandemic of virus diseases (such as the ongoing COVID-19) requires rapid analysis, annotation and evaluation of metagenomic libraries to enable a quick and efficient screening of nucleotide sequences. Traditional sequence alignment methods are not suitable and there is a need for fast alignment-free techniques for sequence analysis. Information theory and data compression algorithms provide a rich set of mathematical and computational tools to capture essential patterns in biological sequences. In 2013, our research group (Nagaraj et al., Eur. Phys. J. Special Topics 222(3-4), 2013) has proposed a novel measure known as Effort-To-Compress (ETC) based on the notion of compression-complexity to capture the information content of sequences. In this study, we propose a compression-complexity based distance measure for automatic identification of SARS coronavirus strains from a set of viruses using only short fragments of nucleotide sequences. We also demonstrate that our proposed method can correctly distinguish SARS-CoV-2 from SARS-CoV-1 viruses by analyzing very short segments of nucleotide sequences. This work could be extended further to enable medical practitioners in automatically identifying and characterizing SARS coronavirus strain in a fast and efficient fashion using short and/or incomplete segments of nucleotide sequences. Potentially, the need for sequence assembly can be circumvented. Note The main ideas and results of this research were first presented at the International Conference on Nonlinear Systems and Dynamics (CNSD-2013) held at Indian Institute of Technology, Indore, December 12, 2013. In this manuscript, we have extended our preliminary analysis to include SARS-CoV-2 virus as well.
Subject
  • Virology
  • Information theory
  • Doomsday scenarios
  • Molecular biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software