About: In many outbreaks caused by viruses, the transmission of the agents can occur through contaminated environmental surfaces. Because of the increasing incidence of viral infections, there is a need to evaluate novel engineering control methods for inactivation of viruses on surfaces. Ultraviolet germicidal irradiation (UVGI) is considered a promising method to inactivate viruses. This study evaluated UVGI effectiveness for viruses on the surface of gelatin-based medium in a UV exposure chamber. The effects of UV dose, viral nucleic acid type (single-stranded RNA, ssRNA; single-stranded DNA, ssDNA; double-stranded RNA, dsRNA; and double-stranded DNA, dsDNA), and relative humidity on the virus survival fraction were investigated. For 90% viral reduction, the UV dose was 1.32 to 3.20 mJ/cm(2) for ssRNA, 2.50 to to 4.47 mJ/cm(2) for ssDNA, 3.80 to 5.36 mJ/cm(2) for dsRNA, and 7.70 to 8.13 mJ/cm(2) for dsDNA. For all four tested viruses, the UV dose for 99% viral reduction was 2 times higher than those for 90% viral reduction. Viruses on a surface with single-stranded nucleic acid (ssRNA and ssDNA) were more susceptible to UV inactivation than viruses with double-stranded nucleic acid (dsRNA and dsDNA). For the same viral reduction, the UV dose at 85% relative humidity (RH) was higher than that at 55% RH. In summary, results showed that UVGI was an effective method for inactivation of viruses on surfaces.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • In many outbreaks caused by viruses, the transmission of the agents can occur through contaminated environmental surfaces. Because of the increasing incidence of viral infections, there is a need to evaluate novel engineering control methods for inactivation of viruses on surfaces. Ultraviolet germicidal irradiation (UVGI) is considered a promising method to inactivate viruses. This study evaluated UVGI effectiveness for viruses on the surface of gelatin-based medium in a UV exposure chamber. The effects of UV dose, viral nucleic acid type (single-stranded RNA, ssRNA; single-stranded DNA, ssDNA; double-stranded RNA, dsRNA; and double-stranded DNA, dsDNA), and relative humidity on the virus survival fraction were investigated. For 90% viral reduction, the UV dose was 1.32 to 3.20 mJ/cm(2) for ssRNA, 2.50 to to 4.47 mJ/cm(2) for ssDNA, 3.80 to 5.36 mJ/cm(2) for dsRNA, and 7.70 to 8.13 mJ/cm(2) for dsDNA. For all four tested viruses, the UV dose for 99% viral reduction was 2 times higher than those for 90% viral reduction. Viruses on a surface with single-stranded nucleic acid (ssRNA and ssDNA) were more susceptible to UV inactivation than viruses with double-stranded nucleic acid (dsRNA and dsDNA). For the same viral reduction, the UV dose at 85% relative humidity (RH) was higher than that at 55% RH. In summary, results showed that UVGI was an effective method for inactivation of viruses on surfaces.
Subject
  • Virology
  • Biotechnology
  • Hygiene
  • RNA
  • Nucleic acids
  • RNA splicing
  • Molecular biology
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software