About: Recent outbreak of 2019-nCoV in Wuhan raised serious public health concerns. By February 15, 2020 in Wuhan, the total number of confirmed infection cases has reached 37,914, and the number of deaths has reached 1123, accounting for 56.9% of the total confirmed cases and 73.7% of the total deaths in China. People are eager to know when the epidemic will be completely controlled and when people's work and life will be on the right track. In this study we analyzed the epidemic dynamics and trend of 2019-nCoV in Wuhan by using the data after the closure of Wuhan city till February 12, 2020 based on the SEIR modeling method. The optimal parameters were estimated as R0=1.44 (interquartile range: 1.40-1.47),TI=14 (interquartile range: 14-14) and TE=3.0 (interquartile range: 2.8-3.1). Based on these parameters, the number of infected individuals in Wuhan city may reach the peak around February 19 at about 45,000 people. Once entering March, the epidemic would gradually decline, and end around the late March. It is worth noting that the above prediction is based on the assumption that the number of susceptible population N = 200,000 will not increase. If the epidemic situation is not properly controlled, the peak of infected number can be further increased and the peak time will be a little postponed. It was expected that the epidemic would subside in early March, and disappear gradually towards the late March.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Recent outbreak of 2019-nCoV in Wuhan raised serious public health concerns. By February 15, 2020 in Wuhan, the total number of confirmed infection cases has reached 37,914, and the number of deaths has reached 1123, accounting for 56.9% of the total confirmed cases and 73.7% of the total deaths in China. People are eager to know when the epidemic will be completely controlled and when people's work and life will be on the right track. In this study we analyzed the epidemic dynamics and trend of 2019-nCoV in Wuhan by using the data after the closure of Wuhan city till February 12, 2020 based on the SEIR modeling method. The optimal parameters were estimated as R0=1.44 (interquartile range: 1.40-1.47),TI=14 (interquartile range: 14-14) and TE=3.0 (interquartile range: 2.8-3.1). Based on these parameters, the number of infected individuals in Wuhan city may reach the peak around February 19 at about 45,000 people. Once entering March, the epidemic would gradually decline, and end around the late March. It is worth noting that the above prediction is based on the assumption that the number of susceptible population N = 200,000 will not increase. If the epidemic situation is not properly controlled, the peak of infected number can be further increased and the peak time will be a little postponed. It was expected that the epidemic would subside in early March, and disappear gradually towards the late March.
Subject
  • COVID-19
  • BRICS nations
  • Scientific modeling
  • Scale statistics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software