AttributesValues
type
value
  • The COVID-19 pandemic has caused a global shortage of personal protective equipment. While existing supply chains are struggling to meet the surge in demand, the limited supply of N95 filtering facepiece respirators (FFRs) has placed healthcare workers at risk. This paper presents a method for scalable and distributed manufacturing of FFR filter material based on a combination of centrifugal melt spinning utilizing readily available cotton candy machines as an example. The proposed method produces nonwoven polypropylene fabric material with filtering efficiency of up to 96% for particles 0.30-0.49 {/mu}m in diameter. We additionally demonstrate a scalable means to test for filtration efficiency and pressure drop to ensure a standardized degree of quality in the output material. We perform preliminary optimization of relevant parameters for scale-up and propose that this is a viable method to rapidly produce up to one million N95 FFRs per day in distributed manner with just six machines per site operating across 200 locations. We share this work as a starting point for others to rapidly construct, replicate and develop their own affordable modular processes aimed at producing high quality filtration material to address the current FFR shortage globally.
Subject
  • Protective gear
  • Safety engineering
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software