AttributesValues
type
value
  • The effective extraction of ranked disease-symptom relationships is a critical component in various medical tasks, including computer-assisted medical diagnosis or the discovery of unexpected associations between diseases. While existing disease-symptom relationship extraction methods are used as the foundation in the various medical tasks, no collection is available to systematically evaluate the performance of such methods. In this paper, we introduce the Disease-Symptom Relation Collection (dsr-collection), created by five physicians as expert annotators. We provide graded symptom judgments for diseases by differentiating between relevant symptoms and primary symptoms. Further, we provide several strong baselines, based on the methods used in previous studies. The first method is based on word embeddings, and the second on co-occurrences of MeSH-keywords of medical articles. For the co-occurrence method, we propose an adaption in which not only keywords are considered, but also the full text of medical articles. The evaluation on the dsr-collection shows the effectiveness of the proposed adaption in terms of nDCG, precision, and recall.
subject
  • Humanities
  • Symptoms
  • Medical terminology
  • Nosology
  • History of education
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software