About: Providing the real-time working system able to localize the dangerous contaminant source is one of the main challenges of the cities emergency response groups. Unfortunately, all proposed up to now frameworks capable of estimating the contamination source localization based on recorded by the sensors network the substance concentrations are not able to work in real-time. The reason is the significant computational time required by the applied dispersion models. In such reconstruction systems, the parameters of the given dispersion model are sampled to fit the model output to the registrations; thus, the dispersion model is run tens of thousands of times. In this paper, we test the possibility of training an artificial neural network (ANN) to effectively simulate the atmospheric toxin transport in the highly urbanized area. The use of a fast neural network in place of computationally costly dispersion models in systems localizing the source of contamination can enable its fast response time. As a training domain, we have chosen the center of London, as it was used in the DAPPLE field experiment. The training dataset is generated by the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System. To achieve the ANN capable of estimating the contaminant concentration, we tested various ANN structures, i.e., numbers of ANN layers, neurons, and activation functions. The performed tests confirm that trained ANN has the potential to replace the dispersion model in the contaminant source localization systems.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Providing the real-time working system able to localize the dangerous contaminant source is one of the main challenges of the cities emergency response groups. Unfortunately, all proposed up to now frameworks capable of estimating the contamination source localization based on recorded by the sensors network the substance concentrations are not able to work in real-time. The reason is the significant computational time required by the applied dispersion models. In such reconstruction systems, the parameters of the given dispersion model are sampled to fit the model output to the registrations; thus, the dispersion model is run tens of thousands of times. In this paper, we test the possibility of training an artificial neural network (ANN) to effectively simulate the atmospheric toxin transport in the highly urbanized area. The use of a fast neural network in place of computationally costly dispersion models in systems localizing the source of contamination can enable its fast response time. As a training domain, we have chosen the center of London, as it was used in the DAPPLE field experiment. The training dataset is generated by the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System. To achieve the ANN capable of estimating the contaminant concentration, we tested various ANN structures, i.e., numbers of ANN layers, neurons, and activation functions. The performed tests confirm that trained ANN has the potential to replace the dispersion model in the contaminant source localization systems.
Subject
  • Greater London
  • Capitals in Europe
  • Classification algorithms
  • Mathematical and quantitative methods (economics)
  • Market research
  • Artificial neural networks
  • Computational neuroscience
  • Market segmentation
  • Mathematical psychology
  • Computational statistics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software