About: Coronavirus disease (COVID-19) is the biggest public health challenge the world is facing in recent days. Since there is no effective vaccine and treatment for this virus, therefore, the only way to mitigate this infection is the implementation of non-pharmaceutical interventions such as social-distancing, community lockdown, quarantine, hospitalization or self-isolation and contact-tracing. In this paper, we develop a mathematical model to explore the transmission dynamics and possible control of the COVID-19 pandemic in Pakistan, one of the Asian countries with a high burden of disease with more than 100,000 confirmed infected cases so far. Initially, a mathematical model without optimal control is formulated and some of the basic necessary analysis of the model, including stability results of the disease-free equilibrium is presented. It is found that the model is stable around the disease-free equilibrium both locally and globally when the basic reproduction number is less than unity. Despite the basic analysis of the model, we further consider the confirmed infected COVID-19 cases documented in Pakistan from March 1 till May 28, 2020 and estimate the model parameters using the least square fitting tools from statistics and probability theory. The results show that the model output is in good agreement with the reported COVID-19 infected cases. The approximate value of the basic reproductive number based on the estimated parameters is [Formula: see text]. The effect of low (or mild), moderate, and comparatively strict control interventions like social-distancing, quarantine rate, (or contact-tracing of suspected people) and hospitalization (or self-isolation) of testing positive COVID-19 cases are shown graphically. It is observed that the most effective strategy to minimize the disease burden is the implementation of maintaining a strict social-distancing and contact-tracing to quarantine the exposed people. Furthermore, we carried out the global sensitivity analysis of the most crucial parameter known as the basic reproduction number using the Latin Hypercube Sampling (LHS) and the partial rank correlation coefficient (PRCC) techniques. The proposed model is then reformulated by adding the time-dependent control variables u(1)(t) for quarantine and u(2)(t) for the hospitalization interventions and present the necessary optimality conditions using the optimal control theory and Pontryagin’s maximum principle. Finally, the impact of constant and optimal control interventions on infected individuals is compared graphically.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Coronavirus disease (COVID-19) is the biggest public health challenge the world is facing in recent days. Since there is no effective vaccine and treatment for this virus, therefore, the only way to mitigate this infection is the implementation of non-pharmaceutical interventions such as social-distancing, community lockdown, quarantine, hospitalization or self-isolation and contact-tracing. In this paper, we develop a mathematical model to explore the transmission dynamics and possible control of the COVID-19 pandemic in Pakistan, one of the Asian countries with a high burden of disease with more than 100,000 confirmed infected cases so far. Initially, a mathematical model without optimal control is formulated and some of the basic necessary analysis of the model, including stability results of the disease-free equilibrium is presented. It is found that the model is stable around the disease-free equilibrium both locally and globally when the basic reproduction number is less than unity. Despite the basic analysis of the model, we further consider the confirmed infected COVID-19 cases documented in Pakistan from March 1 till May 28, 2020 and estimate the model parameters using the least square fitting tools from statistics and probability theory. The results show that the model output is in good agreement with the reported COVID-19 infected cases. The approximate value of the basic reproductive number based on the estimated parameters is [Formula: see text]. The effect of low (or mild), moderate, and comparatively strict control interventions like social-distancing, quarantine rate, (or contact-tracing of suspected people) and hospitalization (or self-isolation) of testing positive COVID-19 cases are shown graphically. It is observed that the most effective strategy to minimize the disease burden is the implementation of maintaining a strict social-distancing and contact-tracing to quarantine the exposed people. Furthermore, we carried out the global sensitivity analysis of the most crucial parameter known as the basic reproduction number using the Latin Hypercube Sampling (LHS) and the partial rank correlation coefficient (PRCC) techniques. The proposed model is then reformulated by adding the time-dependent control variables u(1)(t) for quarantine and u(2)(t) for the hospitalization interventions and present the necessary optimality conditions using the optimal control theory and Pontryagin’s maximum principle. Finally, the impact of constant and optimal control interventions on infected individuals is compared graphically.
subject
  • Academic publishing
  • Bibliographic database providers
  • Electronic documents
  • Evaluation methods
  • Identifiers
  • Index (publishing)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software