About: We propose a data driven epidemic model using the real data on the infection, recovery and death cases for the analysis of COVID-19 progression in India. The model assumes continuation of existing control measures such as lockdown and quarantines, the suspected and confirmed cases and does not consider the scenario of 2(nd) surge of the epidemic due to any reason. The model is arrived after least square fitting of epidemic behaviour model based on theoretical formulation to the real data of cumulative infection cases reported between 24 March 2020 and 30May 2020. The predictive capability of the model has been validated with real data of infection cases reported during June 1-10, 2020. A detailed analysis of model predictions in terms of future trend of COVID-19 progress individually in 18 states of India and India as a whole has been attempted. Infection rate in India, as a whole, is continuously decreasing with time and has reached 3 times lower than the initial infection rate after 6 weeks of lock down suggesting the effectiveness of the lockdown in containing the epidemic. Results suggest that India, as a whole, could see the peak and end of the epidemic in the month of July 2020 and March 2021 respectively as per the current trend in the data. Active infected cases in India may touch 2 lakhs or little above at the peak time and total infected cases may reach over 19 lakhs as per current trend. State-wise results have been discussed in the manuscript. However, the prediction may deviate particularly for longer dates, as assumptions of model cannot be met always in a real scenario. In view of this, a real time application (COV-IND Predictor) has been developed which automatically syncs the latest data from the national COVID19 dash board on daily basis and updates the model input parameters and predictions instantaneously. This real time application can be accessed from the link: https://docs.google.com/spreadsheets/d/1fCwgnQ-dz4J0YWVDHUcbEW1423wOJjdEXm8TqJDWNAk/edit?usp=sharing and can serve as a practical tool for policy makers to track peak time and maximum active infected cases based on latest trend in data for medical readiness and taking epidemic management decisions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • We propose a data driven epidemic model using the real data on the infection, recovery and death cases for the analysis of COVID-19 progression in India. The model assumes continuation of existing control measures such as lockdown and quarantines, the suspected and confirmed cases and does not consider the scenario of 2(nd) surge of the epidemic due to any reason. The model is arrived after least square fitting of epidemic behaviour model based on theoretical formulation to the real data of cumulative infection cases reported between 24 March 2020 and 30May 2020. The predictive capability of the model has been validated with real data of infection cases reported during June 1-10, 2020. A detailed analysis of model predictions in terms of future trend of COVID-19 progress individually in 18 states of India and India as a whole has been attempted. Infection rate in India, as a whole, is continuously decreasing with time and has reached 3 times lower than the initial infection rate after 6 weeks of lock down suggesting the effectiveness of the lockdown in containing the epidemic. Results suggest that India, as a whole, could see the peak and end of the epidemic in the month of July 2020 and March 2021 respectively as per the current trend in the data. Active infected cases in India may touch 2 lakhs or little above at the peak time and total infected cases may reach over 19 lakhs as per current trend. State-wise results have been discussed in the manuscript. However, the prediction may deviate particularly for longer dates, as assumptions of model cannot be met always in a real scenario. In view of this, a real time application (COV-IND Predictor) has been developed which automatically syncs the latest data from the national COVID19 dash board on daily basis and updates the model input parameters and predictions instantaneously. This real time application can be accessed from the link: https://docs.google.com/spreadsheets/d/1fCwgnQ-dz4J0YWVDHUcbEW1423wOJjdEXm8TqJDWNAk/edit?usp=sharing and can serve as a practical tool for policy makers to track peak time and maximum active infected cases based on latest trend in data for medical readiness and taking epidemic management decisions.
subject
  • BRICS nations
  • Scientific modeling
  • Member states of the South Asian Association for Regional Cooperation
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software