AttributesValues
type
value
  • Solving inverse problems is a crucial task in several applications that strongly affect our daily lives, including multiple engineering fields, military operations, and/or energy production. There exist different methods for solving inverse problems, including gradient based methods, statistics based methods, and Deep Learning (DL) methods. In this work, we focus on the latest. Specifically, we study the design of proper loss functions for dealing with inverse problems using DL. To do this, we introduce a simple benchmark problem with known analytical solution. Then, we propose multiple loss functions and compare their performance when applied to our benchmark example problem. In addition, we analyze how to improve the approximation of the forward function by: (a) considering a Hermite-type interpolation loss function, and (b) reducing the number of samples for the forward training in the Encoder-Decoder method. Results indicate that a correct design of the loss function is crucial to obtain accurate inversion results.
Subject
  • Deep learning
  • Emerging technologies
  • Artificial intelligence
  • Differential calculus
  • Inverse problems
  • Optimal decisions
  • Artificial neural networks
  • Loss functions
  • Engineering occupations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software