About: The ability to attach different functional moieties to a molecular building block(1,2) could lead to applications in nanoelectronics(3), nanophotonics(4), intelligent sensing(5) and drug delivery(6,7). The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created(1,8,9,10,11,12), these have not been universally applicable. Recently, DNA has been used to generate various nanostructures(13,14,15,16,17) or hybrid systems(18,19,20,21,22,23,24,25), and as a generic building block for various applications(26,27,28,29,30). Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nnano.2009.93) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The ability to attach different functional moieties to a molecular building block(1,2) could lead to applications in nanoelectronics(3), nanophotonics(4), intelligent sensing(5) and drug delivery(6,7). The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created(1,8,9,10,11,12), these have not been universally applicable. Recently, DNA has been used to generate various nanostructures(13,14,15,16,17) or hybrid systems(18,19,20,21,22,23,24,25), and as a generic building block for various applications(26,27,28,29,30). Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nnano.2009.93) contains supplementary material, which is available to authorized users.
Subject
  • Nanomaterials
  • Biomaterials
  • Asymmetry
  • Orientation (geometry)
  • Disney television networks
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software