AttributesValues
type
value
  • Even though transitivity is a central structural feature of social networks, its influence on epidemic spread on coevolving networks has remained relatively unexplored. Here we introduce and study an adaptive susceptible-infected-susceptible (SIS) epidemic model wherein the infection and network coevolve with nontrivial probability to close triangles during edge rewiring, leading to substantial reinforcement of network transitivity. This model provides an opportunity to study the role of transitivity in altering the SIS dynamics on a coevolving network. Using numerical simulations and approximate master equations (AMEs), we identify and examine a rich set of dynamical features in the model. In many cases, AMEs including transitivity reinforcement provide accurate predictions of stationary-state disease prevalence and network degree distributions. Furthermore, for some parameter settings, the AMEs accurately trace the temporal evolution of the system. We show that higher transitivity reinforcement in the model leads to lower levels of infective individuals in the population, when closing a triangle is the dominant rewiring mechanism. These methods and results may be useful in developing ideas and modeling strategies for controlling SIS-type epidemics.
subject
  • Epidemiology
  • Habitat
  • Ecological processes
  • Elementary algebra
  • Evolutionary biology
  • Scientific modeling
  • Environmental terminology
  • Transitive relations
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software