AttributesValues
type
value
  • Artificial intelligence (AI) and machine learning, in particular, have gained significant interest in many fields, including pharmaceutical sciences. The enormous growth of data from several sources, the recent advances in various analytical tools, and the continuous developments in machine learning algorithms have resulted in a rapid increase in new machine learning applications in different areas of pharmaceutical sciences. This review summarizes the past, present, and potential future impacts of machine learning technologies on different areas of pharmaceutical sciences, including drug design and discovery, preformulation, and formulation. The machine learning methods commonly used in pharmaceutical sciences are discussed, with a specific emphasis on artificial neural networks due to their capability to model the nonlinear relationships that are commonly encountered in pharmaceutical research. AI and machine learning technologies in common day-to-day pharma needs as well as industrial and regulatory insights are reviewed. Beyond traditional potentials of implementing digital technologies using machine learning in the development of more efficient, fast, and economical solutions in pharmaceutical sciences are also discussed.
Subject
  • Learning
  • Medicinal chemistry
  • Machine learning
  • Pharmacy
  • Symbols
  • Cybernetics
  • Digital electronics
  • Greek words and phrases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software