About: Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation.
Subject
  • Virology
  • Feces
  • German cuisine
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software