About: COVID-19 infodemic has been spreading faster than the pandemic itself. The misinformation riding upon the infodemic wave poses a major threat to people's health and governance systems. Since social media is the largest source of information, managing the infodemic not only requires mitigating of misinformation but also an early understanding of psychological patterns resulting from it. During the COVID-19 crisis, Twitter alone has seen a sharp 45% increase in the usage of its curated events page, and a 30% increase in its direct messaging usage, since March 6th 2020. In this study, we analyze the psychometric impact and coupling of the COVID-19 infodemic with the official bulletins related to COVID-19 at the national and state level in India. We look at these two sources with a psycho-linguistic lens of emotions and quantified the extent and coupling between the two. We modified path, a deep skip-gram based open-sourced lexicon builder for effective capture of health-related emotions. We were then able to capture the time-evolution of health-related emotions in social media and official bulletins. An analysis of lead-lag relationships between the time series of extracted emotions from official bulletins and social media using Granger's causality showed that state bulletins were leading the social media for some emotions such as Medical Emergency. Further insights that are potentially relevant for the policymaker and the communicators actively engaged in mitigating misinformation are also discussed. Our paper also introduces CoronaIndiaDataset2, the first social media based COVID-19 dataset at national and state levels from India with over 5.6 million national and 2.6 million state-level tweets. Finally, we present our findings as COVibes, an interactive web application capturing psychometric insights captured upon the CoronaIndiaDataset, both at a national and state level.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • COVID-19 infodemic has been spreading faster than the pandemic itself. The misinformation riding upon the infodemic wave poses a major threat to people's health and governance systems. Since social media is the largest source of information, managing the infodemic not only requires mitigating of misinformation but also an early understanding of psychological patterns resulting from it. During the COVID-19 crisis, Twitter alone has seen a sharp 45% increase in the usage of its curated events page, and a 30% increase in its direct messaging usage, since March 6th 2020. In this study, we analyze the psychometric impact and coupling of the COVID-19 infodemic with the official bulletins related to COVID-19 at the national and state level in India. We look at these two sources with a psycho-linguistic lens of emotions and quantified the extent and coupling between the two. We modified path, a deep skip-gram based open-sourced lexicon builder for effective capture of health-related emotions. We were then able to capture the time-evolution of health-related emotions in social media and official bulletins. An analysis of lead-lag relationships between the time series of extracted emotions from official bulletins and social media using Granger's causality showed that state bulletins were leading the social media for some emotions such as Medical Emergency. Further insights that are potentially relevant for the policymaker and the communicators actively engaged in mitigating misinformation are also discussed. Our paper also introduces CoronaIndiaDataset2, the first social media based COVID-19 dataset at national and state levels from India with over 5.6 million national and 2.6 million state-level tweets. Finally, we present our findings as COVibes, an interactive web application capturing psychometric insights captured upon the CoronaIndiaDataset, both at a national and state level.
subject
  • Universal Windows Platform apps
  • Disinformation operations
  • Marvel Comics mutants
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software