About: We propose an automatic method to identify people who are potentially-infected by droplet-transmitted diseases. This high-risk group of infection was previously identified by conducting large-scale visits/interviews, or manually screening among tons of recorded surveillance videos. Both are time-intensive and most likely to delay the control of communicable diseases like influenza. In this paper, we address this challenge by solving a multi-tasking problem from the captured surveillance videos. This multi-tasking framework aims to model the principle of Close Proximity Interaction and thus infer the infection risk of individuals. The complete workflow includes three essential sub-tasks: (1) person re-identification (REID), to identify the diagnosed patient and infected individuals across different cameras, (2) depth estimation, to provide a spatial knowledge of the captured environment, (3) pose estimation, to evaluate the distance between the diagnosed and potentially-infected subjects. Our method significantly reduces the time and labor costs. We demonstrate the advantages of high accuracy and efficiency of our method. Our method is expected to be effective in accelerating the process of identifying the potentially infected group and ultimately contribute to the well-being of public health.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • We propose an automatic method to identify people who are potentially-infected by droplet-transmitted diseases. This high-risk group of infection was previously identified by conducting large-scale visits/interviews, or manually screening among tons of recorded surveillance videos. Both are time-intensive and most likely to delay the control of communicable diseases like influenza. In this paper, we address this challenge by solving a multi-tasking problem from the captured surveillance videos. This multi-tasking framework aims to model the principle of Close Proximity Interaction and thus infer the infection risk of individuals. The complete workflow includes three essential sub-tasks: (1) person re-identification (REID), to identify the diagnosed patient and infected individuals across different cameras, (2) depth estimation, to provide a spatial knowledge of the captured environment, (3) pose estimation, to evaluate the distance between the diagnosed and potentially-infected subjects. Our method significantly reduces the time and labor costs. We demonstrate the advantages of high accuracy and efficiency of our method. Our method is expected to be effective in accelerating the process of identifying the potentially infected group and ultimately contribute to the well-being of public health.
Subject
  • Epidemiology
  • Virus taxonomy
  • Infectious diseases
  • Quality of life
  • Welfare economics
  • Operating system technology
  • Concurrent computing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software