About: As the COVID-19 epidemic expands in the world, and with the previous SARS epidemic, avian flu, Ebola and AIDS serving as a warning, biomedical and biotechnological research has the task to find solutions to counteract viral entry and pathogenesis. A novel approach can come from marine chemodiversity, recognized as a relevant source for developing a future natural “antiviral pharmacy”. Activities of antioxidants against viruses can be exploited to cope with human viral infection, from single individual infections to protection of populations. There is a potentially rich and fruitful reservoir of such compounds thanks to the plethora of bioactive molecules and families present in marine microorganisms. The aim of this communication is to present the state-of-play of what is known on the antiviral activities recognized in (micro)algae, highlighting the different molecules from various algae and their mechanisms of actions, when known. Given the ability of various algal molecules—mainly sulfated polysaccharides—to inhibit viral infection at Stage I (adsorption and invasion of cells), we envisage a need to further investigate the antiviral ability of algae, and their mechanisms of action. Given the advantages of microalgal production compared to other organisms, the opportunity might become reality in a short period of time.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • As the COVID-19 epidemic expands in the world, and with the previous SARS epidemic, avian flu, Ebola and AIDS serving as a warning, biomedical and biotechnological research has the task to find solutions to counteract viral entry and pathogenesis. A novel approach can come from marine chemodiversity, recognized as a relevant source for developing a future natural “antiviral pharmacy”. Activities of antioxidants against viruses can be exploited to cope with human viral infection, from single individual infections to protection of populations. There is a potentially rich and fruitful reservoir of such compounds thanks to the plethora of bioactive molecules and families present in marine microorganisms. The aim of this communication is to present the state-of-play of what is known on the antiviral activities recognized in (micro)algae, highlighting the different molecules from various algae and their mechanisms of actions, when known. Given the ability of various algal molecules—mainly sulfated polysaccharides—to inhibit viral infection at Stage I (adsorption and invasion of cells), we envisage a need to further investigate the antiviral ability of algae, and their mechanisms of action. Given the advantages of microalgal production compared to other organisms, the opportunity might become reality in a short period of time.
subject
  • Virology
  • Polyphyletic groups
  • Arthropod-borne viral fevers and viral haemorrhagic fevers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software