AttributesValues
type
value
  • Abstract Type I interferons (IFNs) are essential to the clearance of viral diseases, however, a clear distinction between genes upregulated by direct virus–cell interactions and genes upregulated by secondary IFN production has not been made. Here, we investigated differential gene regulation in ferrets upon subcutaneous administration of IFN-α2b and during SARS-CoV infection. In vivo experiments revealed that IFN-α2b causes STAT1 phosphorylation and upregulation of abundant IFN response genes (IRGs), chemokine receptors, and other genes that participate in phagocytosis and leukocyte transendothelial migration. During infection with SARS-CoV not only a variety of IRGs were upregulated, but also a significantly broader range of genes involved in cell migration and inflammation. This work allowed dissection of several molecular signatures present during SARS-CoV which are part of a robust IFN antiviral response. These signatures can be useful markers to evaluate the status of IFN responses during a viral infection and specific features of different viruses.
Subject
  • Virology
  • Immune system
  • Cytokines
  • Antivirals
  • Immunostimulants
  • Leukocytes
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software