About: Social distancing and ventilation were emphasized broadly to control the ongoing pandemic COVID-19 in confined spaces. Rationales behind these two strategies, however, were debated, especially regarding quantitative recommendations. The answers to “what is the safe distance” and “what is sufficient ventilation” are crucial to the upcoming reopening of businesses and schools, but rely on many medical, biological, and engineering factors. This study introduced two new indices into the popular while perfect-mixing-based Wells-Riley model for predicting airborne virus related infection probability – the underlying reasons for keeping adequate social distance and space ventilation. The distance index P(d) can be obtained by theoretical analysis on droplet distribution and transmission from human respiration activities, and the ventilation index E(z) represents the system-dependent air distribution efficiency in a space. The study indicated that 1.6-3.0 m (5.2-9.8 ft) is the safe social distance when considering aerosol transmission of exhaled large droplets from talking, while the distance can be up to 8.2 m (26 ft) if taking into account of all droplets under calm air environment. Because of unknown dose response to COVID-19, the model used one actual pandemic case to calibrate the infectious dose (quantum of infection), which was then verified by a number of other existing cases with short exposure time (hours). Projections using the validated model for a variety of scenarios including transportation vehicles and building spaces illustrated that (1) increasing social distance (e.g., halving occupancy density) can significantly reduce the infection rate (20-40%) during the first 30 minutes even under current ventilation practices; (2) minimum ventilation or fresh air requirement should vary with distancing condition, exposure time, and effectiveness of air distribution systems.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Social distancing and ventilation were emphasized broadly to control the ongoing pandemic COVID-19 in confined spaces. Rationales behind these two strategies, however, were debated, especially regarding quantitative recommendations. The answers to “what is the safe distance” and “what is sufficient ventilation” are crucial to the upcoming reopening of businesses and schools, but rely on many medical, biological, and engineering factors. This study introduced two new indices into the popular while perfect-mixing-based Wells-Riley model for predicting airborne virus related infection probability – the underlying reasons for keeping adequate social distance and space ventilation. The distance index P(d) can be obtained by theoretical analysis on droplet distribution and transmission from human respiration activities, and the ventilation index E(z) represents the system-dependent air distribution efficiency in a space. The study indicated that 1.6-3.0 m (5.2-9.8 ft) is the safe social distance when considering aerosol transmission of exhaled large droplets from talking, while the distance can be up to 8.2 m (26 ft) if taking into account of all droplets under calm air environment. Because of unknown dose response to COVID-19, the model used one actual pandemic case to calibrate the infectious dose (quantum of infection), which was then verified by a number of other existing cases with short exposure time (hours). Projections using the validated model for a variety of scenarios including transportation vehicles and building spaces illustrated that (1) increasing social distance (e.g., halving occupancy density) can significantly reduce the infection rate (20-40%) during the first 30 minutes even under current ventilation practices; (2) minimum ventilation or fresh air requirement should vary with distancing condition, exposure time, and effectiveness of air distribution systems.
Subject
  • Virology
  • Physical chemistry
  • Rear-wheel-drive vehicles
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software