About: We present an original approach to sound program extraction in a proof assistant, using syntax-driven automation to derive correct-by-construction imperative programs from nondeterministic functional source code. Our approach does not require committing to a single inflexible compilation strategy and instead makes it straightforward to create domain-specific code translators. In addition to a small set of core definitions, our framework is a large, user-extensible collection of compilation rules each phrased to handle specific language constructs, code patterns, or data manipulations. By mixing and matching these pieces of logic, users can easily tailor extraction to their own domains and programs, getting maximum performance and ensuring correctness of the resulting assembly code. Using this approach, we complete the first proof-generating pipeline that goes automatically from high-level specifications to assembly code. In our main case study, the original specifications are phrased to resemble SQL-style queries, while the final assembly code does manual memory management, calls out to foreign data structures and functions, and is suitable to deploy on resource-constrained platforms. The pipeline runs entirely within the Coq proof assistant, leading to final, linked assembly code with overall full-functional-correctness proofs in separation logic.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • We present an original approach to sound program extraction in a proof assistant, using syntax-driven automation to derive correct-by-construction imperative programs from nondeterministic functional source code. Our approach does not require committing to a single inflexible compilation strategy and instead makes it straightforward to create domain-specific code translators. In addition to a small set of core definitions, our framework is a large, user-extensible collection of compilation rules each phrased to handle specific language constructs, code patterns, or data manipulations. By mixing and matching these pieces of logic, users can easily tailor extraction to their own domains and programs, getting maximum performance and ensuring correctness of the resulting assembly code. Using this approach, we complete the first proof-generating pipeline that goes automatically from high-level specifications to assembly code. In our main case study, the original specifications are phrased to resemble SQL-style queries, while the final assembly code does manual memory management, calls out to foreign data structures and functions, and is suitable to deploy on resource-constrained platforms. The pipeline runs entirely within the Coq proof assistant, leading to final, linked assembly code with overall full-functional-correctness proofs in separation logic.
subject
  • Embedded systems
  • Syntax
  • Programming language classification
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software