About: Herein, molecular modeling techniques were used with the main goal to obtain candidates from a drug database as potential targets to be used against SARS-CoV-2. This novel coronavirus, responsible by the COVID-19 outbreak since the end of 2019, became a challenge since there is not vaccine for this disease. The first step in this investigation was to solvate the isolated S-protein in water for molecular dynamics (MD) simulation, being observed a transition from “up” to “down” conformation of receptor-binding domain (RBD) of the S-protein with angle of 54.3 and 43.0 degrees, respectively. The RBD region was more exposed to the solvent and to the possible drugs due to its enhanced surface area. From the equilibrated MD structure, virtual screening by docking calculations were performed using a library contained 9091 FDA approved drugs. Among them, 24 best-scored ligands (14 traditional herbal isolate and 10 approved drugs) with the binding energy below –8.1 kcal/mol were selected as potential candidates to inhibit the SARS-CoV-2 S-protein, preventing the human cell infection and their replication. For instance, the ivermectin drug (present in our list of promise candidates) was recently used successful to control viral replication in vitro. MD simulations were performed for the three best ligands@S-protein complexes and the binding energies were calculated using the MM/PBSA approach. Overall, it is highlighted an important strategy, some key residues, and chemical groups which may be considered on clinical trials for COVID-19 outbreak.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Herein, molecular modeling techniques were used with the main goal to obtain candidates from a drug database as potential targets to be used against SARS-CoV-2. This novel coronavirus, responsible by the COVID-19 outbreak since the end of 2019, became a challenge since there is not vaccine for this disease. The first step in this investigation was to solvate the isolated S-protein in water for molecular dynamics (MD) simulation, being observed a transition from “up” to “down” conformation of receptor-binding domain (RBD) of the S-protein with angle of 54.3 and 43.0 degrees, respectively. The RBD region was more exposed to the solvent and to the possible drugs due to its enhanced surface area. From the equilibrated MD structure, virtual screening by docking calculations were performed using a library contained 9091 FDA approved drugs. Among them, 24 best-scored ligands (14 traditional herbal isolate and 10 approved drugs) with the binding energy below –8.1 kcal/mol were selected as potential candidates to inhibit the SARS-CoV-2 S-protein, preventing the human cell infection and their replication. For instance, the ivermectin drug (present in our list of promise candidates) was recently used successful to control viral replication in vitro. MD simulations were performed for the three best ligands@S-protein complexes and the binding energies were calculated using the MM/PBSA approach. Overall, it is highlighted an important strategy, some key residues, and chemical groups which may be considered on clinical trials for COVID-19 outbreak.
Subject
  • Clinical research
  • Antiparasitic agents
  • Musical groups from Mexico City
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software