AttributesValues
type
value
  • Biosensors-based devices are transforming medical diagnosis of diseases and monitoring of patient signals. The development of smart and automated molecular diagnostic tools equipped with biomedical big data analysis, cloud computing and medical artificial intelligence can be an ideal approach for the detection and monitoring of diseases, precise therapy, and storage of data over the cloud for supportive decisions. This review focused on the use of machine learning approaches for the development of futuristic CRISPR-biosensors based on microchips and the use of Internet of Things for wireless transmission of signals over the cloud for support decision making. The present review also discussed the discovery of CRISPR, its usage as a gene editing tool, and the CRISPR-based biosensors with high sensitivity of Attomolar (10(−18)M), Femtomolar (10(−15)M) and Picomolar (10(−12)M) in comparison to conventional biosensors with sensitivity of nanomolar 10(−9)M and micromolar 10(−3)M. Additionally, the review also outlines limitations and open research issues in the current state of CRISPR-based biosensing applications.
Subject
  • Chemical properties
  • Digital electronics
  • Distributed computing problems
  • Semiconductor devices
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software