AttributesValues
type
value
  • Abstract The spike protein S of coronaviruses contains a highly conserved cytoplasmic cysteine-rich motif adjacent to the transmembrane region. This motif is palmitoylated in the Betacoronaviruses MHV and SARS-CoV. Here, we demonstrate by metabolic labeling with [3H]-palmitic acid that the S protein of transmissible gastroenteritis coronavirus (TGEV), an Alphacoronavirus, is palmitoylated as well. This is relevant for TGEV replication as virus growth was compromised by the general palmitoylation inhibitor 2-bromopalmitate. Mutation of individual cysteine clusters in the cysteine-rich motif of S revealed that all cysteines must be replaced to abolish acylation and incorporation of S into virus-like particles (VLP). Conversely, the interaction of S with the M protein, essential for VLP incorporation of S, was not impaired by lack of palmitoylation. Thus, palmitoylation of the S protein of Alphacoronaviruses is dispensable for S–M interaction, but required for the generation of progeny virions.
subject
  • Virology
  • Animal virology
  • Posttranslational modification
  • Glucogenic amino acids
  • Peripheral membrane proteins
  • Virus genera
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software