AttributesValues
type
value
  • We design an optimal group boarding method using a stochastic cellular automata model for passenger movements, which is extended by a virus transmission approach. Furthermore, a new mathematical model is developed to determine an appropriate seat layout for groups. The proposed seating layout is based on the idea that group members are allowed to have close contact and that groups should have a distance among each other. The sum of individual transmission rates is taken as the objective function to derive scenarios with a low level transmission risk. After the determination of an appropriate seat layout, the cellular automata is used to derive and evaluate a corresponding boarding sequence aiming at both short boarding times and low risk of virus transmission. We find that the consideration of groups in a pandemic scenario will significantly contribute to a faster boarding (reduction of time by about 60%) and less transmission risk (reduced by 85%), which reaches the level of boarding times in pre-pandemic scenarios.
subject
  • Lattice models
  • Software quality
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software