AttributesValues
type
value
  • The molecular structure of 4-nitropyridine N-oxide, 4-NO(2)-PyO, has been determined by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and by quantum chemical calculations (DFT and MP2). Comparison of these results with those for non-substituted pyridine N-oxide and 4-methylpyridine N-oxide CH(3)-PyO, demonstrate strong substitution effects on structural parameters and electron density distribution. The presence of the electron-withdrawing –NO(2) group in para-position of 4-NO(2)-PyO results in an increase of the ipso-angle and a decrease of the semipolar bond length r(N→O) in comparison to the non-substituted PyO. The presence of the electron-donating –CH(3) group in 4-CH(3)-PyO leads to opposite structural changes. Electron density distribution in pyridine-N-oxide and its two substituted compounds are discussed in terms of natural bond orbitals (NBO) and quantum theory atoms in molecule (QTAIM).
subject
  • Elsevier academic journals
  • Substituents
  • Amine oxides
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software