AttributesValues
type
value
  • Comprehensive protein interaction mapping projects are underway for many model species and humans. A key step in these projects is estimating the time, cost, and personnel required for obtaining an accurate and complete map. Here, we model the cost of interaction map completion across a spectrum of experimental designs. We show that current efforts may require up to 20 independent tests covering each protein pair to approach completion. We explore designs for reducing this cost substantially, including prioritization of protein pairs, probability thresholding, and interaction prediction. The best designs lower cost by four-fold overall and >100-fold in early stages of mapping. We demonstrate the best strategy in an ongoing project in Drosophila, in which we map 450 high-confidence interactions using 47 microtiter plates, versus thousands of plates expected using current designs. This study provides a framework for assessing the feasibility of interaction mapping projects and for future efforts to increase their efficiency.
Subject
  • SES
  • USB
  • Computer-related introductions in 2008
  • Communications satellite orbital positions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software