About: δ-Crystallin is the major structural protein in avian eye lenses and is homologous to the urea cycle enzyme argininosuccinate lyase. This protein is structurally assembled as double dimers. Lys-315 is the only residue which is arranged symmetrically at the diagonal subunit interfaces to interact with each other. This study found that wild-type protein had both dimers and monomers present in 2–4 M urea whilst only monomers of the K315A mutant were observed under the same conditions, as judged by sedimentation velocity analysis. The assembly of monomeric K315A mutant was reversible in contrast to wild-type protein. Molecular dynamics simulations showed that the dissociation of primary dimers is prior to the diagonal dimers in wild-type protein. These results suggest the critical role of Lys-315 in stabilization of the diagonal dimer structure. Guanidinium hydrochloride (GdmCl) denatured wild-type or K315A mutant protein did not fold into functional protein. However, the urea dissociated monomers of K315A mutant protein in GdmCl were reversible folding through a multiple steps mechanism as measured by tryptophan and ANS fluorescence. Two partly unfolded intermediates were detected in the pathway. Refolding of the intermediates resulted in a conformation with greater amounts of hydrophobic regions exposed which was prone to the formation of protein aggregates. The formation of aggregates was not prevented by the addition of α-crystallin. These results highlight that the conformational status of the monomers is critical for determining whether reversible oligomerization or aggregate formation occurs.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • δ-Crystallin is the major structural protein in avian eye lenses and is homologous to the urea cycle enzyme argininosuccinate lyase. This protein is structurally assembled as double dimers. Lys-315 is the only residue which is arranged symmetrically at the diagonal subunit interfaces to interact with each other. This study found that wild-type protein had both dimers and monomers present in 2–4 M urea whilst only monomers of the K315A mutant were observed under the same conditions, as judged by sedimentation velocity analysis. The assembly of monomeric K315A mutant was reversible in contrast to wild-type protein. Molecular dynamics simulations showed that the dissociation of primary dimers is prior to the diagonal dimers in wild-type protein. These results suggest the critical role of Lys-315 in stabilization of the diagonal dimer structure. Guanidinium hydrochloride (GdmCl) denatured wild-type or K315A mutant protein did not fold into functional protein. However, the urea dissociated monomers of K315A mutant protein in GdmCl were reversible folding through a multiple steps mechanism as measured by tryptophan and ANS fluorescence. Two partly unfolded intermediates were detected in the pathway. Refolding of the intermediates resulted in a conformation with greater amounts of hydrophobic regions exposed which was prone to the formation of protein aggregates. The formation of aggregates was not prevented by the addition of α-crystallin. These results highlight that the conformational status of the monomers is critical for determining whether reversible oligomerization or aggregate formation occurs.
Subject
  • Proteomics
  • Proteins
  • Protein structure
  • Classical genetics
  • Dimers (chemistry)
  • Molecular biology
  • Proteinogenic amino acids
  • Monomers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software