AttributesValues
type
value
  • Delay differential equations are set up for zeroth-order pandemic models in analogy with traditional SIR and SEIR models by specifying individual times of incubation and infectiousness prior to recovery. Independent linear delay relations in addition to a nonlinear delay differential equation are found for characterizing time-dependent compartmental populations. Asymptotic behavior allows a link between parameters of the delay and traditional models for their comparison. In analogy with transformation of the traditional equations into linear form giving populations and time in parametric form, approximation of the delay equations results in a simple accurate finite recursive solution. Otherwise, straightforward numerical solution is effected in terms of linearized boundary conditions specifying the distribution of instigators as to their initial infection progress--in contrast to traditional models specifying only initial average infectious and exposed populations. Examples contrasting asymptotically-linked traditional and delay models are given.
subject
  • Differential equations
  • Mathematical physics
  • Control theory
  • Geometry processing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software