About: Disease is a major constraint on animal production and welfare in agriculture and aquaculture. Movement of animals between farms is one of the most significant routes of disease transmission and is particularly hard to control for pathogens with subclinical infection. Renibacterium salmoninarum causes bacterial kidney disease (BKD) in salmonid fish, but infection is often sub-clinical and may go undetected with major potential implications for disease control programmes. A Susceptible-Infected model of R. salmoninarum in Scottish aquaculture has been developed that subdivides the infected phase between known and undetected sub-clinically infected farms and diseased farms whose status is assumed to be known. Farms officially known to be infected are subject to movement controls restricting spread of infection. Model results are sensitive to prevalence of undetected infection, which is unknown. However, the modelling suggests that controls that reduce BKD prevalence include improve biosecurity on farms, including those not known to be infected, and improved detection of infection. Culling appears of little value for BKD control. BKD prevalence for rainbow trout farms is less sensitive to controls than it is for Atlantic salmon farms and so different management strategies may be required for the sectors.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Disease is a major constraint on animal production and welfare in agriculture and aquaculture. Movement of animals between farms is one of the most significant routes of disease transmission and is particularly hard to control for pathogens with subclinical infection. Renibacterium salmoninarum causes bacterial kidney disease (BKD) in salmonid fish, but infection is often sub-clinical and may go undetected with major potential implications for disease control programmes. A Susceptible-Infected model of R. salmoninarum in Scottish aquaculture has been developed that subdivides the infected phase between known and undetected sub-clinically infected farms and diseased farms whose status is assumed to be known. Farms officially known to be infected are subject to movement controls restricting spread of infection. Model results are sensitive to prevalence of undetected infection, which is unknown. However, the modelling suggests that controls that reduce BKD prevalence include improve biosecurity on farms, including those not known to be infected, and improved detection of infection. Culling appears of little value for BKD control. BKD prevalence for rainbow trout farms is less sensitive to controls than it is for Atlantic salmon farms and so different management strategies may be required for the sectors.
subject
  • Epidemiology
  • Infectious diseases
  • Fauna of the Rocky Mountains
  • Fauna of Atlantic Canada
  • Bacterial diseases of fish
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software