This HTML5 document contains 96 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dbthttp://dbpedia.org/resource/Template:
n21http://dbpedia.org/resource/Set_(music)
n38http://commons.wikimedia.org/wiki/Special:FilePath/Set_theory_3-1_in_the_chromatic_circle.svg?width=
n36http://commons.wikimedia.org/wiki/Special:FilePath/Diatonic_scale_on_C.
n13http://dbpedia.org/resource/File:Diatonic_scale_on_C.
wikipedia-enhttp://en.wikipedia.org/wiki/
n29https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Template:
dbrhttp://dbpedia.org/resource/
n37http://commons.wikimedia.org/wiki/Special:FilePath/Set_theory_3-1_in_the_chromatic_circle.
n7https://www.mta.ca/pc-set/calculator/pc_calculate.
n4http://dbpedia.org/resource/Set_theory_(music)
dcthttp://purl.org/dc/terms/
n41http://localhost:8890/about/id/entity/http/dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n17http://dbpedia.org/resource/File:Parallel_tonic_chords_on_C.
n11https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/
dbphttp://dbpedia.org/property/
n8https://web.archive.org/web/20130118035710/http:/solomonsmusic.net/pcsets.
xsdhhttp://www.w3.org/2001/XMLSchema#
n40http://dbpedia.org/resource/Normal_form_(music)
n9http://dbpedia.org/resource/Transposition_(music)
dbohttp://dbpedia.org/ontology/
n44http://en.wikipedia.org/wiki/Forte_number?oldid=1110546640&ns=
n24http://dbpedia.org/resource/Forte_number#
n34http://commons.wikimedia.org/wiki/Special:FilePath/Parallel_tonic_chords_on_C.
n20http://dbpedia.org/resource/Template:Set_theory_(music)
n32http://commons.wikimedia.org/wiki/Special:FilePath/Locrian_mode_C.
dbchttp://dbpedia.org/resource/Category:
n22http://rdf.freebase.com/ns/m.
wdhttp://www.wikidata.org/entity/
n25http://purl.org/linguistics/gold/
n30https://global.dbpedia.org/id/
n42http://www.jaytomlin.com/music/settheory/help.html%23
n18http://dbpedia.org/resource/File:Set_theory_3-1_in_the_chromatic_circle.
dbpedia-ithttp://it.dbpedia.org/resource/
n16http://dbpedia.org/resource/File:Locrian_mode_C.
provhttp://www.w3.org/ns/prov#
n39https://web.archive.org/web/20120831015426/http:/composertools.com/Tools/PCSets/setfinder.
foafhttp://xmlns.com/foaf/0.1/
wdrshttp://www.w3.org/2007/05/powder-s#
n35http://dbpedia.org/resource/Prime_form_(music)
n28http://dbpedia.org/resource/Necklace_(combinatorics)
owlhttp://www.w3.org/2002/07/owl#
n33http://dbpedia.org/resource/%22Ode-to-Napoleon%22
Subject Item
dbr:Forte_number
rdf:type
dbo:Place
rdfs:label
Numero di Forte Forte number
rdfs:comment
In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches. Il set 3-1 ha tre possibili rotazioni/inversioni, la cui forma normale è la torta più piccola o la forma più compatta Nella teoria degli insiemi musicali, un numero di Forte è la coppia di numeri che Allen Forte ha assegnato alla forma primaria di ogni insieme di classi di altezze di tre o più membri in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). Il primo numero indica il numero di classi di altezza nell'insieme di classi di altezza e il secondo numero indica la posizione della sequenza dell'insieme nell'ordine di Forte di tutti gli insiemi di classi di altezza che contengono lo stesso numero di altezze.
owl:sameAs
dbpedia-it:Numero_di_Forte n22:0ch1lgc n30:4jguP wd:Q5472554 dbr:Forte_number
foaf:topic
dbr:Allen_Forte n4: wikipedia-en:Forte_number dbr:Chromatic_hexachord dbr:Forte dbr:John_Rahn dbr:Minor_major_seventh_chord dbr:All-trichord_hexachord n24:this dbr:List_of_set_classes dbr:Tonality dbr:Set_type n33:_hexachord dbr:Farben_chord dbr:Tristan_chord n28: dbr:Viennese_trichord dbr:List_of_tone_rows_and_series dbr:Diatonic_hexachord dbr:Distance_model n21: dbr:Octatonic_scale dbr:Interval_vector
foaf:depiction
n32:png n34:png n36:png n37:svg
wdrs:describedby
n11:Pair n29:Anchor n11:Cyclic_permutation n41:Minor_chord n11:Major_chord n41:Major_chord
dct:subject
dbc:Musical_set_theory
dbo:wikiPageID
27942103
dbo:wikiPageRevisionID
1110546640
dbo:wikiPageWikiLink
dbr:Viennese_trichord n9: dbr:Major_chord dbr:Binary_sequence dbr:Octave dbr:Pitch_class n13:png n16:png n17:png n4: n18:svg n21: dbr:Number dbr:Second_inversion dbc:Musical_set_theory n28: dbr:Diatonic_scale dbr:Inversional_equivalency dbr:Semitone dbr:12-TET n35: dbr:Lexicographic_order dbr:Equivalence_class dbr:List_of_set_classes dbr:Interval_vector n40: dbr:Combinatorics dbr:Atonality dbr:Elliott_Carter dbr:Cyclic_permutation dbr:Minor_chord dbr:Allen_Forte
dbo:wikiPageExternalLink
n7:html n8:htm n39:html n42:forte
foaf:isPrimaryTopicOf
wikipedia-en:Forte_number
prov:wasDerivedFrom
n44:0
n25:hypernym
dbr:Pair
dbo:abstract
Il set 3-1 ha tre possibili rotazioni/inversioni, la cui forma normale è la torta più piccola o la forma più compatta Nella teoria degli insiemi musicali, un numero di Forte è la coppia di numeri che Allen Forte ha assegnato alla forma primaria di ogni insieme di classi di altezze di tre o più membri in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). Il primo numero indica il numero di classi di altezza nell'insieme di classi di altezza e il secondo numero indica la posizione della sequenza dell'insieme nell'ordine di Forte di tutti gli insiemi di classi di altezza che contengono lo stesso numero di altezze. Accordi maggiori e minori in Do In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches. In the 12-TET tuning system (or in any other system of tuning that splits the octave into twelve semitones), each pitch class may be denoted by an integer in the range from 0 to 11 (inclusive), and a pitch class set may be denoted by a set of these integers.The prime form of a pitch class set is the most compact (i.e., leftwards packed or smallest in lexicographic order) of either the normal form of a set or of its inversion. The normal form of a set is that which is transposed so as to be most compact. For example, a second inversion major chord contains the pitch classes 7, 0, and 4. The normal form would then be 0, 4 and 7. Its (transposed) inversion, which happens to be the minor chord, contains the pitch classes 0, 3, and 7; and is the prime form. The major and minor chords are both given Forte number 3-11, indicating that it is the eleventh in Forte's ordering of pitch class sets with three pitches. In contrast, the Viennese trichord, with pitch classes 0, 1, and 6, is given Forte number 3-5, indicating that it is the fifth in Forte's ordering of pitch class sets with three pitches. The normal form of the diatonic scale, such as C major; 0, 2, 4, 5, 7, 9, and 11; is 11, 0, 2, 4, 5, 7, and 9; while its prime form is 0, 1, 3, 5, 6, 8, and 10; and its Forte number is 7-35, indicating that it is the thirty-fifth of the seven-member pitch class sets. Sets of pitches which share the same Forte number have identical interval vectors. Those that have different Forte numbers have different interval vectors with the exception of z-related sets (for example 6-Z44 and 6-Z19).
dbo:thumbnail
n38:300
dbo:wikiPageLength
5648
dbp:wikiPageUsesTemplate
n20: dbt:Short_description dbt:Audio dbt:ISBN dbt:Citation_needed dbt:Anchor dbt:Reflist