This HTML5 document contains 203 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dbthttp://dbpedia.org/resource/Template:
n20http://dbpedia.org/resource/Etching_(microfabrication)
n48http://dbpedia.org/resource/Molding_(process)
wikipedia-enhttp://en.wikipedia.org/wiki/
n37http://dbpedia.org/resource/File:Crystal_interferometer.
n68http://dbpedia.org/resource/Kirchhoff'
n29http://dbpedia.org/resource/Franz_Pfeiffer_(physicist)
n56http://commons.wikimedia.org/wiki/Special:FilePath/Fig2forWikip.
dbrhttp://dbpedia.org/resource/
n58http://commons.wikimedia.org/wiki/Special:FilePath/EPS_figure.
n27http://dbpedia.org/resource/File:Phase_contrast_benefit_ratio.
n4http://dbpedia.org/resource/Snell'
n57http://commons.wikimedia.org/wiki/Special:FilePath/Dr._Anatoly_Snigirev.
n21http://dbpedia.org/resource/Stephen_W.
n6http://commons.wikimedia.org/wiki/Special:FilePath/Optical_Talbot_Carpet.
n36http://dbpedia.org/resource/File:Attenuation_and_phase_shift_of_electromagnetic_wave_propagating_in_medium_with_complex_index_of_refraction_n.
n30http://dbpedia.org/resource/File:Propagation-based_imaging.
n28http://dbpedia.org/resource/File:Polychromatic_far-field_interferometer.
n35http://dbpedia.org/resource/File:Analyzer-based_imaging.
dcthttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n24http://dbpedia.org/resource/File:Grating-based_imaging.
n33http://localhost:8890/about/id/entity/http/dbpedia.org/resource/
n62https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Polarization_(waves)
n15http://commons.wikimedia.org/wiki/Special:FilePath/Propagation-based_imaging.
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n64http://dbpedia.org/resource/Sample_(material)
n26http://dbpedia.org/resource/File:Optical_Talbot_Carpet.
n34http://dbpedia.org/resource/Cross_section_(physics)
n39http://dbpedia.org/resource/File:EPS_figure.
n22http://dbpedia.org/resource/File:Fig1forWikip.
n8https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/
dbphttp://dbpedia.org/property/
n63http://dbpedia.org/resource/Coherence_(physics)
n10http://commons.wikimedia.org/wiki/Special:FilePath/Grating-based_imaging.
xsdhhttp://www.w3.org/2001/XMLSchema#
n61http://dbpedia.org/resource/Barn_(unit)
dbohttp://dbpedia.org/ontology/
n53http://commons.wikimedia.org/wiki/Special:FilePath/Crystal_interferometer.
n67http://dbpedia.org/resource/Ray_(optics)
dbchttp://dbpedia.org/resource/Category:
n31http://dbpedia.org/resource/File:X-ray-PhaseContrast-EarPlug.
n60http://dbpedia.org/resource/Interference_(wave_propagation)
dbpedia-dehttp://de.dbpedia.org/resource/
n47http://rdf.freebase.com/ns/m.
n49http://dbpedia.org/resource/Polarization_(waves)
wdhttp://www.wikidata.org/entity/
n40http://purl.org/linguistics/gold/
n59https://global.dbpedia.org/id/
n52http://commons.wikimedia.org/wiki/Special:FilePath/Attenuation_and_phase_shift_of_electromagnetic_wave_propagating_in_medium_with_complex_index_of_refraction_n.
n38http://dbpedia.org/resource/File:Dr._Anatoly_Snigirev.
n25http://dbpedia.org/resource/File:Grating_Bonse-Hart_Interferometer.
n69http://commons.wikimedia.org/wiki/Special:FilePath/X-ray-PhaseContrast-EarPlug.png?width=
n50http://dbpedia.org/resource/Phase-contrast_X-ray_imaging#
n12http://commons.wikimedia.org/wiki/Special:FilePath/X-ray-PhaseContrast-EarPlug.
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n55http://commons.wikimedia.org/wiki/Special:FilePath/Fig1forWikip.
n45https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Snell'
n42http://dbpedia.org/resource/Phase_(waves)
wdrshttp://www.w3.org/2007/05/powder-s#
n51https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Category:
n9http://commons.wikimedia.org/wiki/Special:FilePath/Phase_contrast_benefit_ratio.
n54http://commons.wikimedia.org/wiki/Special:FilePath/Analyzer-based_imaging.
n11http://commons.wikimedia.org/wiki/Special:FilePath/Grating_Bonse-Hart_Interferometer.
n16http://dbpedia.org/resource/Dispersion_(optics)
n23http://dbpedia.org/resource/File:Fig2forWikip.
n14http://commons.wikimedia.org/wiki/Special:FilePath/Polychromatic_far-field_interferometer.
n66http://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging?oldid=1117784592&ns=
owlhttp://www.w3.org/2002/07/owl#
Subject Item
dbr:Phase-contrast_X-ray_imaging
rdfs:label
Röntgen-Phasenkontrast-Bildgebung Phase-contrast X-ray imaging
rdfs:comment
Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector. However, in phase contrast X-ray imaging, the beam's phase shift caused by the sample is not measured directly, but is transformed into variations in intensity, which then can be recorded by the detector. Röntgen-Phasenkontrast-Bildgebung bezeichnet eine Reihe von technischen Methoden, welche die Phasenverschiebung der Röntgenstrahlen beim Durchgang durch Materie für die Bildgebung nutzen. Da die Phasenverschiebung nicht direkt gemessen werden kann (Phasenproblem), müssen verschiedene Anordnungen von beugenden und absorbierenden Optiken genutzt werden, um die Phasenänderung durch Interferenz in eine messbare, laterale Intensitätsmodulation umzuwandeln. Unter Verwendung von kohärenten Strahlungsquellen und hochauflösenden Detektoren können auch Phasenbilder durch Rekonstruktion der Wellenpropagation gewonnen werden.
owl:sameAs
dbr:Phase-contrast_X-ray_imaging dbpedia-de:Röntgen-Phasenkontrast-Bildgebung wd:Q7180906 n47:0pl1gt3 n59:4tMLM
foaf:topic
dbr:X-ray_Phase_Contrast_Tomography dbr:Hans_Hertz dbr:European_Synchrotron_Radiation_Facility dbr:Synchrotron_light_source n21:_Wilkins n29: dbr:Keith_Nugent dbr:European_XFEL dbr:BepiColombo dbr:Phase-contrast_microscopy dbr:X-ray_phase-contrast_imaging dbr:Jeffrey_Siewerdsen dbr:Villa_of_the_Papyri dbr:Frits_Zernike dbr:2021_in_science n50:this dbr:List_of_X-ray_space_telescopes wikipedia-en:Phase-contrast_X-ray_imaging dbr:Single-shot_multi-contrast_X-ray_imaging dbr:Interferometry dbr:Herculaneum_papyri dbr:International_Conference_on_X-Ray_Microscopy dbr:Phase-contrast_imaging dbr:Atsushi_Momose dbr:CSIRO dbr:Phase-contrast_x-ray_imaging dbr:Refractive_index dbr:X-ray dbr:Bennettitales
foaf:depiction
n6:png n9:jpg n10:png n11:jpg n12:png n14:jpg n15:png n52:png n53:png n54:png n55:svg n56:svg n57:jpg n58:jpg
wdrs:describedby
n8:Atomic_number n33:Term n33:Interferometry n8:Tomography n45:s_law n8:Term n8:Phase-contrast_microscopy n8:Phase_shift n51:Imaging n8:Laplace_operator n8:Radiography n62: n8:Osteoarthritis n8:Interferometry n8:Attenuation
dct:subject
dbc:Imaging dbc:Interferometry dbc:X-ray_instrumentation
dbo:wikiPageID
35154335
dbo:wikiPageRevisionID
1117784592
dbo:wikiPageWikiLink
dbr:3D_projection dbr:X-ray_lithography dbr:Bragg_condition dbr:Single_crystal dbr:Holography dbr:Radiography n4:s_law dbr:Synchrotron_radiation dbr:X-ray dbr:Soft_tissue dbr:Paul_Scherrer_Institute dbr:Dynamical_theory_of_diffraction dbr:Interferometry n16: dbr:X-ray_detector dbr:Filtered_back_projection n20: dbr:Velocity_of_light dbr:Phase_velocity dbr:Group_velocity dbr:Henry_Fox_Talbot dbr:Atom_interferometer dbr:Aspect_ratio dbr:Electroplating dbr:LIGA dbr:Optical_microscopy dbr:Silicon_wafer n22:svg n23:svg dbr:Paleontology n24:PNG n25:jpg n26:png n27:jpg n28:jpg n30:PNG n31:png dbr:Wavelength dbr:Tomography dbr:X-rays n34: n35:PNG n36:png n37:PNG n38:jpg n39:jpg dbr:Storage_ring dbr:Plane_wave dbr:Grazing_incidence_diffraction n42: dbr:Near-field_optics dbr:Osteoporosis dbr:Angstrom dbc:Imaging dbr:FWHM dbr:Nobel_Prize dbr:Phase-contrast_microscopy dbr:Bone_disease dbr:Mammography dbr:Fossil dbr:Edge_enhancement dbr:Diffraction_grating dbr:Phase-contrast_imaging dbr:Radian dbr:Karlsruhe_Institute_of_Technology dbr:Talbot_effect n48: n49: dbr:Projectional_radiography dbr:European_Synchrotron_Radiation_Facility dbr:Frits_Zernike dbr:John_Clauser dbr:X-ray_tube dbr:Fourier_series n29: dbr:Atomic_number dbr:Modular_arithmetic n60: dbr:Light dbr:X-ray_computed_tomography dbr:Principle_of_relativity dbr:Phase_shift n61: n63: n64: dbr:Shack–Hartmann_wavefront_sensor dbr:Synchrotron dbr:Nobel_Prize_in_Physics dbr:Tomographic_reconstruction dbr:Micrometers dbr:Phase_retrieval dbr:Geometrical_optics dbr:Fresnel_diffraction dbr:Classical_electron_radius dbr:Wilhelm_Conrad_Röntgen dbr:Laplace_operator dbr:Photolithography dbr:Atsushi_Momose dbr:Attenuation n67: dbr:Derivative dbr:Bragg_diffraction dbr:Angular_wavenumber dbr:Refractive_index dbr:CSIRO dbr:Linearization dbr:Wave_vector dbr:Computed_tomography dbr:Biological_small-angle_scattering dbc:Interferometry n68:s_diffraction_formula dbr:Moiré_pattern dbr:Gradient dbc:X-ray_instrumentation dbr:Electromagnetic_radiation dbr:Osteoarthritis dbr:Instantaneous_phase dbr:Absorbed_dose
foaf:isPrimaryTopicOf
wikipedia-en:Phase-contrast_X-ray_imaging
prov:wasDerivedFrom
n66:0
n40:hypernym
dbr:Term
dbo:abstract
Röntgen-Phasenkontrast-Bildgebung bezeichnet eine Reihe von technischen Methoden, welche die Phasenverschiebung der Röntgenstrahlen beim Durchgang durch Materie für die Bildgebung nutzen. Da die Phasenverschiebung nicht direkt gemessen werden kann (Phasenproblem), müssen verschiedene Anordnungen von beugenden und absorbierenden Optiken genutzt werden, um die Phasenänderung durch Interferenz in eine messbare, laterale Intensitätsmodulation umzuwandeln. Unter Verwendung von kohärenten Strahlungsquellen und hochauflösenden Detektoren können auch Phasenbilder durch Rekonstruktion der Wellenpropagation gewonnen werden. Der entscheidende Vorteil der phasensensitiven Methoden liegt darin, dass sie röntgentransparente Objekte wie Weichteilgewebe sensitiver abbilden können. Zusätzlich können streuende Objekte wie das Lungengewebe kontrastreich abgebildet werden. Dabei wird ausgenutzt, dass Röntgen-Kleinwinkelstreuung des durchleuchteten Objekts eine Schwächung des erzeugten Interferenzmusters bewirkt. Aufgrund von Ähnlichkeiten zur Dunkelfeldmikroskopie wird das durch Streuung zustande kommende Bild auch als bezeichnet. Herkömmliche Röntgenbildgebung wie z. B. die Radiographie oder Computertomographie basieren bis heute hingegen nur auf der Abschwächung der Strahlintensität (Lambert-Beer Gesetz) durch das abzubildende Objekt und erzeugen so nur einen niedrigen Kontrast zwischen Objekten ähnlicher materieller Zusammensetzung. Die verschiedenen technischen Realisierungen zur Erzeugung von Röntgen-Phasenkontrast-Bildern werden insbesondere für Anwendungen in der Medizin, Biologie und Materialwissenschaften entwickelt. Potentielle klinische Anwendungen werden derzeit in vorklinischen Studien erschlossen. Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector. However, in phase contrast X-ray imaging, the beam's phase shift caused by the sample is not measured directly, but is transformed into variations in intensity, which then can be recorded by the detector. In addition to producing projection images, phase contrast X-ray imaging, like conventional transmission, can be combined with tomographic techniques to obtain the 3D distribution of the real part of the refractive index of the sample. When applied to samples that consist of atoms with low atomic number Z, phase contrast X-ray imaging is more sensitive to density variations in the sample than conventional transmission-based X-ray imaging. This leads to images with improved soft tissue contrast. In the last several years, a variety of phase-contrast X-ray imaging techniques have been developed, all of which are based on the observation of interference patterns between diffracted and undiffracted waves. The most common techniques are crystal interferometry, propagation-based imaging, analyzer-based imaging, edge-illumination and grating-based imaging (see below).
dbo:thumbnail
n69:300
dbo:wikiPageLength
114339
dbp:wikiPageUsesTemplate
dbt:Math dbt:Short_description dbt:Ill dbt:X-ray_science dbt:Reflist dbt:Commons_category-inline