This HTML5 document contains 25 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n11https://doi.org/10.2196/
dcthttp://purl.org/dc/terms/
covidprhttp://ns.inria.fr/covid19/property/
fabiohttp://purl.org/spar/fabio/
dcehttp://purl.org/dc/elements/1.1/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
bibohttp://purl.org/ontology/bibo/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
covidhttp://ns.inria.fr/covid19/
xsdhhttp://www.w3.org/2001/XMLSchema#
n6http://ns.inria.fr/covid19/PMC7428910#
Subject Item
covid:PMC7428910
rdf:type
fabio:ResearchPaper bibo:AcademicArticle schema:ScholarlyArticle
rdfs:isDefinedBy
covid:dataset-1-2
dct:title
An App for Classifying Personal Mental Illness at Workplace Using Fit Statistics and Convolutional Neural Networks: Survey-Based Quantitative Study
dce:creator
Hsing, Shu-Chen Eysenbach, Gunther Yeh, Yu-Tsen Muto, Tomoyasu Rahman, Juber Yan, Yu-Hua Chien, Tsair-Wei Chou, Willy
dct:source
Medline; PMC
dct:abstract
n6:abstract
dct:issued
2020-07-31
bibo:doi
10.2196/17857
bibo:pmid
32735232
dct:license
cc-by
schema:url
n11:17857
covidpr:hasTitle
n6:title
fabio:hasPubMedCentralId
PMC7428910
fabio:hasPubMedId
32735232
schema:publication
JMIR Mhealth Uhealth
covidpr:hasBody
n6:body_text