comment
| - La notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon.
- Нотация Конвея для многогранников, разработанная Конвеем и продвигаемая , используется для описания многогранников, опираясь на затравочный (т.е. используемый для создания других) многогранник, модифицируемый различными префикс-операциями.
- 콘웨이 다면체 표기법은 존 호턴 콘웨이가 개발한 다면체의 표기법이다. 기하학에서, 존 호튼 콘웨이가 발명하고 조지 W. 하트가 장려한 콘웨이 다면체 표기법은 다양한 접두사 연산에 의해 수정된 씨앗 다면체에 기초한 다면체를 묘사하기 위해 사용된다. 콘웨이와 하트는 케플러가 정의한 절단 연산자를 사용하여 동일한 대칭의 관련 다면체를 만드는 아이디어를 확장했습니다. 예를 들어 tC는 잘린 큐브를 나타내고 taC는 다음과 같이 구문 분석합니다. 다면체는 그들의 꼭짓점, 모서리, 면이 어떻게 서로 연결되는지를 위상적으로 연구하거나 공간에서의 요소 배치의 관점에서 기하학적으로 연구할 수 있습니다. 이러한 연산자의 다른 구현은 기하학적으로 다르지만 위상적으로 동일한 다면체를 생성할 수 있습니다. 이러한 위상적으로 동등한 다면체는 구에 다면체 그래프를 많이 내장하는 것으로 생각할 수 있습니다. 달리 명시되지 않은 한, 본 문서(및 Conway 연산자에 대한 일반적인 문헌)에서는 토폴로지가 주요 관심사입니다. 속이 0인 다면체는 모호함을 피하기 위해 종종 정식 형태로 놓입니다.
- 康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算。 種子多面體一般都為正多面體或正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如:
* T = 正四面體 (Tetrahedron)
* C = 正方體 (Cube)
* O = 正八面體 (Octahedron)
* D = 正十二面體 (Dodecahedron)
* I = 正二十面體 (Icosahedron)
* H = 正六邊形密鋪 (Hexagonal tiling)
* Q = 正四邊形密鋪 (Quadrille = Square tiling)
* Δ = 正三角形密鋪 (Deltille = Triangular tiling) 另外柱體和錐體也可以作為種子,並以它是底面邊數加一個字母表示:
* P = 柱體 (Prism)
* A = 反稜柱 (Antiprism)
* Y = 錐體 (Pyramid)
* J = 詹森多面體 (Johnson solid) 例如種子“P5”是指五角柱、“P10”是指十角柱、“Y6”是指六角錐、“J86”是指球狀屋頂、“A86”是指86角反稜柱。 任何凸多面體皆可以當作種子,前提是它可以執行操作或運算。
- En geometrio, pluredra skribmaniero de Conway estas maniero por priskribi pluredrojn per vico de operacioj farataj je la fonta pluredro. La skribmaniero konsistas el la finaj signoj prezentataj la fontan pluredron kaj antaŭ ili estas signoj prezentataj la operaciojn, kiu estas aplikataj en la ordo dedekstre maldekstren. La operacioj povas generi ĉiujn arĥimedajn solidojn kaj katalanajn solidojn el la platonaj solidoj. Aplikante pli longajn seriojn de ĉi tiuj operacioj, eblas krei multajn pli malsimplajn pluredrojn.
- In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation as defined by Kepler, to build related polyhedra of the same symmetry. For example, tC represents a truncated cube, and taC, parsed as t(aC), is (topologically) a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements; e.g., a dual cube is an octahedron: dC = O. Applied in a series, these operators allow many to be generated. Conway defined the operators a (ambo), b (bevel), d (dual), e (expand), g (gyro), j (join), k (kis), m (meta), o (ortho), s (snub), and t (truncate), while Hart added r (ref
- En geometría, la notación de poliedros de Conway, inventada por John Horton Conway y promovida por George W. Hart, se usa para describir poliedros basándose en un poliedro semilla modificado mediante distintas operaciones prefijadas.
|