About: Pinch point   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:Surface104362025, within Data Space : wasabi.inria.fr associated with source document(s)

In geometry, a pinch point or cuspidal point is a type of singular point on an algebraic surface. The equation for the surface near a pinch point may be put in the form where [4] denotes terms of degree 4 or more and is not a square in the ring of functions. For example the surface near the point , meaning in coordinates vanishing at that point, has the form above. In fact, if and then {} is a system of coordinates vanishing at then is written in the canonical form. The simplest example of a pinch point is the hypersurface defined by the equation called Whitney umbrella.

AttributesValues
type
label
  • Pinch point (mathematics)
  • Punto de pellizco
comment
  • In geometry, a pinch point or cuspidal point is a type of singular point on an algebraic surface. The equation for the surface near a pinch point may be put in the form where [4] denotes terms of degree 4 or more and is not a square in the ring of functions. For example the surface near the point , meaning in coordinates vanishing at that point, has the form above. In fact, if and then {} is a system of coordinates vanishing at then is written in the canonical form. The simplest example of a pinch point is the hypersurface defined by the equation called Whitney umbrella.
  • En geometría, un punto de pellizco o punto cuspidal es un tipo de punto singular en una .​ La ecuación de una superficie cerca de un punto de pellizco se puede poner en la forma donde [4] denota términos de grado 4 o más y no es un cuadrado en el anillo de funciones. Por ejemplo, en la superficie , las coordenadas desaparecen cerca del punto . De hecho, si y , entonces {} es un sistema de coordenadas que desaparece en cuando la fórmulaestá escrita en forma canónica. El ejemplo más simple de un punto de pellizco es la hipersuperficie definida por la ecuación
sameAs
topic
depiction
  • External Image
described by
Subject
dbo:wikiPageID
dbo:wikiPageRevisionID
dbo:wikiPageWikiLink
is primary topic of
wasDerivedFrom
dbo:abstract
  • In geometry, a pinch point or cuspidal point is a type of singular point on an algebraic surface. The equation for the surface near a pinch point may be put in the form where [4] denotes terms of degree 4 or more and is not a square in the ring of functions. For example the surface near the point , meaning in coordinates vanishing at that point, has the form above. In fact, if and then {} is a system of coordinates vanishing at then is written in the canonical form. The simplest example of a pinch point is the hypersurface defined by the equation called Whitney umbrella. The pinch point (in this case the origin) is a limit of normal crossings singular points (the -axis in this case). These singular points are intimately related in the sense that in order to resolve the pinch point singularity one must blow-up the whole -axis and not only the pinch point.
  • En geometría, un punto de pellizco o punto cuspidal es un tipo de punto singular en una .​ La ecuación de una superficie cerca de un punto de pellizco se puede poner en la forma donde [4] denota términos de grado 4 o más y no es un cuadrado en el anillo de funciones. Por ejemplo, en la superficie , las coordenadas desaparecen cerca del punto . De hecho, si y , entonces {} es un sistema de coordenadas que desaparece en cuando la fórmulaestá escrita en forma canónica. El ejemplo más simple de un punto de pellizco es la hipersuperficie definida por la ecuación que genera la superficie denominada paraguas de Whitney. El punto de pellizco (en este caso, el origen) es un límite de en puntos singulares (el eje en este caso). Estos puntos singulares están íntimamente relacionados en el sentido de que para del punto de pellizco se debe hacer explotar todo el eje y no solo el punto de pellizco.
dbo:thumbnail
dbo:wikiPageLength
dbp:wikiPageUsesTemplate
is sameAs of
is topic of
is dbo:wikiPageWikiLink of
is dbo:wikiPageRedirects of
is Wikipage disambiguates of
is topic of
is http://vocab.deri.ie/void#inDataset of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software