About: Piston (optics)   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:Part109385911, within Data Space : wasabi.inria.fr associated with source document(s)

In optics, piston is the mean value of a wavefront or phase profile across the pupil of an optical system. The piston coefficient is typically expressed in wavelengths of light at a particular wavelength. Its main use is in curve-fitting wavefronts with or Zernike polynomials. Piston and tilt are not actually true optical aberrations, as they do not represent or model curvature in the wavefront. Defocus is the lowest order true optical aberration. If piston and tilt are subtracted from an otherwise perfect wavefront, a perfect, aberration-free image is formed.

AttributesValues
type
label
  • Piston (optics)
comment
  • In optics, piston is the mean value of a wavefront or phase profile across the pupil of an optical system. The piston coefficient is typically expressed in wavelengths of light at a particular wavelength. Its main use is in curve-fitting wavefronts with or Zernike polynomials. Piston and tilt are not actually true optical aberrations, as they do not represent or model curvature in the wavefront. Defocus is the lowest order true optical aberration. If piston and tilt are subtracted from an otherwise perfect wavefront, a perfect, aberration-free image is formed.
sameAs
topic
described by
subject
dbo:wikiPageID
Wikipage revision ID
dbo:wikiPageWikiLink
is primary topic of
wasDerivedFrom
http://purl.org/li...ics/gold/hypernym
dbo:abstract
  • In optics, piston is the mean value of a wavefront or phase profile across the pupil of an optical system. The piston coefficient is typically expressed in wavelengths of light at a particular wavelength. Its main use is in curve-fitting wavefronts with or Zernike polynomials. However, similar to a real engine piston moving up and down in its cylinder, optical piston values can be changed to bias the wavefront phase mean value as desired. As phase values can only vary from zero to 2π, then repeat in either direction (termed phase wrapping), changing the piston coefficient changes the zero phase value contour locations across the wavefront. This property is critical to the operation of , which give not only the magnitude but also the sign (convexity or concavity) of a wavefront under test. Piston is physically created in the interferometer by piezoelectric actuators that translate the Fizeau interferometer reference surface along the optical axis by precise fractions of the test wavelength, usually by one quarter of a wavelength. This changes the interferometric fringe patterns and allows direct calculation of the exact wavefront error. Piston and tilt are not actually true optical aberrations, as they do not represent or model curvature in the wavefront. Defocus is the lowest order true optical aberration. If piston and tilt are subtracted from an otherwise perfect wavefront, a perfect, aberration-free image is formed.
dbo:wikiPageLength
dbp:wikiPageUsesTemplate
is sameAs of
is topic of
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is Wikipage disambiguates of
is topic of
is http://vocab.deri.ie/void#inDataset of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software