About: The coronavirus disease 2019 (COVID‐19) pandemic caused by SARS‐CoV‐2 infections has led to substantial unmet need for treatments, many of which will require testing in appropriate animal models of this disease. Vaccine trials are already underway, but there remains an urgent need to find other therapeutic approaches to either target SARS‐CoV‐2 or the complications arising from viral infection, particularly the dysregulated immune response and systemic complications which have been associated with progression to severe COVID‐19. At the time of writing, in vivo studies of SARS‐CoV‐2 infection have been described using macaques, cats, ferrets, hamsters, and transgenic mice expressing human angiotensin I converting enzyme 2 (ACE2). These infection models have already been useful for studies of transmission and immunity, but to date only partially model the mechanisms implicated in human severe COVID‐19. There is therefore an urgent need for development of animal models for improved evaluation of efficacy of drugs identified as having potential in the treatment of severe COVID‐19. These models need to recapitulate key mechanisms of COVID‐19 severe acute respiratory distress syndrome and reproduce the immunopathology and systemic sequelae associated with this disease. Here, we review the current models of SARS‐CoV‐2 infection and COVID‐19‐related disease mechanisms and suggest ways in which animal models can be adapted to increase their usefulness in research into COVID‐19 pathogenesis and for assessing potential treatments.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The coronavirus disease 2019 (COVID‐19) pandemic caused by SARS‐CoV‐2 infections has led to substantial unmet need for treatments, many of which will require testing in appropriate animal models of this disease. Vaccine trials are already underway, but there remains an urgent need to find other therapeutic approaches to either target SARS‐CoV‐2 or the complications arising from viral infection, particularly the dysregulated immune response and systemic complications which have been associated with progression to severe COVID‐19. At the time of writing, in vivo studies of SARS‐CoV‐2 infection have been described using macaques, cats, ferrets, hamsters, and transgenic mice expressing human angiotensin I converting enzyme 2 (ACE2). These infection models have already been useful for studies of transmission and immunity, but to date only partially model the mechanisms implicated in human severe COVID‐19. There is therefore an urgent need for development of animal models for improved evaluation of efficacy of drugs identified as having potential in the treatment of severe COVID‐19. These models need to recapitulate key mechanisms of COVID‐19 severe acute respiratory distress syndrome and reproduce the immunopathology and systemic sequelae associated with this disease. Here, we review the current models of SARS‐CoV‐2 infection and COVID‐19‐related disease mechanisms and suggest ways in which animal models can be adapted to increase their usefulness in research into COVID‐19 pathogenesis and for assessing potential treatments.
subject
  • Virology
  • Therapy
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Occupational safety and health
  • Primates of Africa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software