About: OBJECTIVES: Enhancement of the potential ability of biomacromolecules to cross cell membranes is a critical step for development of effective therapeutic vaccine especially DNA vaccine against human immunodeficiency virus-1 (HIV-1) infection. The supercharged proteins were known as powerful weapons for delivery of different types of cargoes such as DNA and protein. Hence, we applied B1 protein with + 43 net charges obtained from a single frameshift in the gene encoding enhanced green fluorescent protein (eGFP) for delivery of two multi-epitope DNA constructs (nef-vpu-gp160-p24 and nef-vif-gp160-p24) in vitro and in vivo for the first time. For this purpose, B1 protein was generated in bacterial expression system under native conditions, and used to interact with both DNA constructs. RESULTS: Our data indicated that B1 protein (~ 27 kDa) was able to form a stable nanoparticle (~ 80–110 nm) with both DNA constructs at nitrogen: phosphate (N: P) ratio of 1:1. Moreover, the transfection efficiency of B1 protein for DNA delivery into HEK-293T cell line indicated that the cellular uptake of nef-vif-gp160-p24 DNA/ B1 and nef-vpu-gp160-p24 DNA/ B1 nanoparticles was about 32–35% with lower intensity as compared to TurboFect commercial reagent. On the other hand, immunization of BALB/c mice with different modalities demonstrated that B1 protein could enhance the levels of antibody, IFN-gamma and Granzyme B eliciting potent and strong Th1-directed cellular immunity. CONCLUSION: Generally, our findings showed the potency of B1 protein as a promising gene delivery system to improve an effective therapeutic vaccine against HIV-1 infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • OBJECTIVES: Enhancement of the potential ability of biomacromolecules to cross cell membranes is a critical step for development of effective therapeutic vaccine especially DNA vaccine against human immunodeficiency virus-1 (HIV-1) infection. The supercharged proteins were known as powerful weapons for delivery of different types of cargoes such as DNA and protein. Hence, we applied B1 protein with + 43 net charges obtained from a single frameshift in the gene encoding enhanced green fluorescent protein (eGFP) for delivery of two multi-epitope DNA constructs (nef-vpu-gp160-p24 and nef-vif-gp160-p24) in vitro and in vivo for the first time. For this purpose, B1 protein was generated in bacterial expression system under native conditions, and used to interact with both DNA constructs. RESULTS: Our data indicated that B1 protein (~ 27 kDa) was able to form a stable nanoparticle (~ 80–110 nm) with both DNA constructs at nitrogen: phosphate (N: P) ratio of 1:1. Moreover, the transfection efficiency of B1 protein for DNA delivery into HEK-293T cell line indicated that the cellular uptake of nef-vif-gp160-p24 DNA/ B1 and nef-vpu-gp160-p24 DNA/ B1 nanoparticles was about 32–35% with lower intensity as compared to TurboFect commercial reagent. On the other hand, immunization of BALB/c mice with different modalities demonstrated that B1 protein could enhance the levels of antibody, IFN-gamma and Granzyme B eliciting potent and strong Th1-directed cellular immunity. CONCLUSION: Generally, our findings showed the potency of B1 protein as a promising gene delivery system to improve an effective therapeutic vaccine against HIV-1 infection.
Subject
  • Virology
  • Proteomics
  • Cell imaging
  • HIV/AIDS
  • Membrane biology
  • Molecular biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software