About: There is limited information describing features and outcomes of patients requiring hospitalization for COVID19 disease and still no treatments have clearly demonstrated efficacy. Demographics and clinical variables on admission, as well as laboratory markers and therapeutic interventions were extracted from electronic Clinical Records (eCR) in 4712 SARS-CoV2 infected patients attending 4 public Hospitals in Madrid. Patients were stratified according to age and stage of severity. Using multivariate logistic regression analysis, cut-off points that best discriminated mortality were obtained for each of the studied variables. Principal components analysis and a neural network (NN) algorithm were applied. A high mortality incidence associated to age >70, comorbidities (hypertension, neurological disorders and diabetes), altered vitals such as fever, heart rhythm disturbances or elevated systolic blood pressure, and alterations in several laboratory tests. Remarkably, analysis of therapeutic options either taken individually or in combination drew a universal relationship between the use of Cyclosporine A and better outcomes as also a benefit of tocilizumab and/or corticosteroids in critically ill patients. We present a large Spanish population-based study addressing factors influencing survival in current SARS CoV2 pandemic, with particular emphasis on the effectivity of treatments. In addition, we have generated an NN capable of identifying severity predictors of SARS CoV2. A rapid extraction and management of data protocol from eCR and artificial intelligence in-house implementations allowed us to perform almost real time monitoring of the outbreak evolution.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • There is limited information describing features and outcomes of patients requiring hospitalization for COVID19 disease and still no treatments have clearly demonstrated efficacy. Demographics and clinical variables on admission, as well as laboratory markers and therapeutic interventions were extracted from electronic Clinical Records (eCR) in 4712 SARS-CoV2 infected patients attending 4 public Hospitals in Madrid. Patients were stratified according to age and stage of severity. Using multivariate logistic regression analysis, cut-off points that best discriminated mortality were obtained for each of the studied variables. Principal components analysis and a neural network (NN) algorithm were applied. A high mortality incidence associated to age >70, comorbidities (hypertension, neurological disorders and diabetes), altered vitals such as fever, heart rhythm disturbances or elevated systolic blood pressure, and alterations in several laboratory tests. Remarkably, analysis of therapeutic options either taken individually or in combination drew a universal relationship between the use of Cyclosporine A and better outcomes as also a benefit of tocilizumab and/or corticosteroids in critically ill patients. We present a large Spanish population-based study addressing factors influencing survival in current SARS CoV2 pandemic, with particular emphasis on the effectivity of treatments. In addition, we have generated an NN capable of identifying severity predictors of SARS CoV2. A rapid extraction and management of data protocol from eCR and artificial intelligence in-house implementations allowed us to perform almost real time monitoring of the outbreak evolution.
Subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software