About: Inorganic phosphate is an essential nutrient. In general, microorganisms take up phosphorus when the extracellular phosphorus concentration is low, but not when it is high. In Saccharomyces cerevisiae, the major phosphate transporters, such as Pho84p, and acid phosphatases (APases), such as Pho5p, are regulated in parallel by the phosphate signal transduction pathway (PHO pathway). We found that PHO mutants expressing PHO84 and PHO5, even under high-P conditions, could take up phosphorus at twice the rate of the wild-type strain. The regulatory pathway for phosphorus accumulation in two wastewater treatment yeasts, Hansenula fabianii J640 and Hansenula anomala J224-1, was found to be similar to that in S. cerevisiae. We screened for mutants of these yeasts that constitutively expressed APase. Such mutants formed blue colonies on high phosphorus concentration agar plates containing 5-bromo-4-chloro-3-indolylphosphate (X-phosphate). We found four mutants of H. fabianii J640 and one mutant of H. anomala J224-1 that accumulated from 2.2 to 3.5 times more phosphorus than the parent strains. The growth rates and abilities to remove dissolved total nitrogen and dissolved organic carbon of the mutants were similar to those of the parent strains. In addition, the mutants removed 95% of dissolved total phosphorus from shochu wastewater, while the parent strain removed only 50%.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Inorganic phosphate is an essential nutrient. In general, microorganisms take up phosphorus when the extracellular phosphorus concentration is low, but not when it is high. In Saccharomyces cerevisiae, the major phosphate transporters, such as Pho84p, and acid phosphatases (APases), such as Pho5p, are regulated in parallel by the phosphate signal transduction pathway (PHO pathway). We found that PHO mutants expressing PHO84 and PHO5, even under high-P conditions, could take up phosphorus at twice the rate of the wild-type strain. The regulatory pathway for phosphorus accumulation in two wastewater treatment yeasts, Hansenula fabianii J640 and Hansenula anomala J224-1, was found to be similar to that in S. cerevisiae. We screened for mutants of these yeasts that constitutively expressed APase. Such mutants formed blue colonies on high phosphorus concentration agar plates containing 5-bromo-4-chloro-3-indolylphosphate (X-phosphate). We found four mutants of H. fabianii J640 and one mutant of H. anomala J224-1 that accumulated from 2.2 to 3.5 times more phosphorus than the parent strains. The growth rates and abilities to remove dissolved total nitrogen and dissolved organic carbon of the mutants were similar to those of the parent strains. In addition, the mutants removed 95% of dissolved total phosphorus from shochu wastewater, while the parent strain removed only 50%.
Subject
  • Essential nutrients
  • Sewerage
  • Japanese alcoholic drinks
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software