About: Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30–60%) (refs 1–3). Predisposing factors for ARDS are diverse(1,3) and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus(4,5). At present, there are no effective drugs for improving the clinical outcome of ARDS(1,2,3). Angiotensin-converting enzyme (ACE) and ACE2 are homologues with different key functions in the renin–angiotensin system(6,7,8). ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II and is a negative regulator of the system. ACE2 has also recently been identified as a potential SARS virus receptor and is expressed in lungs(9,10). Here we report that ACE2 and the angiotensin II type 2 receptor (AT(2)) protect mice from severe acute lung injury induced by acid aspiration or sepsis. However, other components of the renin–angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT(1)a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature03712) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30–60%) (refs 1–3). Predisposing factors for ARDS are diverse(1,3) and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus(4,5). At present, there are no effective drugs for improving the clinical outcome of ARDS(1,2,3). Angiotensin-converting enzyme (ACE) and ACE2 are homologues with different key functions in the renin–angiotensin system(6,7,8). ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II and is a negative regulator of the system. ACE2 has also recently been identified as a potential SARS virus receptor and is expressed in lungs(9,10). Here we report that ACE2 and the angiotensin II type 2 receptor (AT(2)) protect mice from severe acute lung injury induced by acid aspiration or sepsis. However, other components of the renin–angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT(1)a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature03712) contains supplementary material, which is available to authorized users.
Subject
  • Intensive care medicine
  • Behavioural sciences
  • Cardiovascular physiology
  • Membrane biology
  • Syndromes affecting the respiratory system
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software